Generative AI in the manufacturing process: theoretical considerations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150098" target="_blank" >RIV/00216305:26110/23:PU150098 - isvavai.cz</a>
Výsledek na webu
<a href="https://sciendo.com/article/10.2478/emj-2023-0029" target="_blank" >https://sciendo.com/article/10.2478/emj-2023-0029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/emj-2023-0029" target="_blank" >10.2478/emj-2023-0029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generative AI in the manufacturing process: theoretical considerations
Popis výsledku v původním jazyce
The paper aims to identify how digital transformation and Generative Artificial Intelligence (GAI), in particular, affect the manufacturing processes. Several dimensions of the Industry 4.0 field have been considered, such as the design of new products, workforce and skill optimisation, enhancing quality control, predictive maintenance, demand forecasting, and marketing strategy. The paper adopts qualitative research based on a critical review approach. It provides evidence of the GAI technology support in the mentioned areas. Appropriate use of emerging technology allows managers to transform manufacturing by optimising processes, improving product design, enhancing quality control, and contributing to overall efficiency and innovation in the industry. Simultaneously, GAI technologies facilitate predictive analytics to forecast and anticipate future demand, quality issues, and potential risks, improve a marketing strategy and identify market trends.
Název v anglickém jazyce
Generative AI in the manufacturing process: theoretical considerations
Popis výsledku anglicky
The paper aims to identify how digital transformation and Generative Artificial Intelligence (GAI), in particular, affect the manufacturing processes. Several dimensions of the Industry 4.0 field have been considered, such as the design of new products, workforce and skill optimisation, enhancing quality control, predictive maintenance, demand forecasting, and marketing strategy. The paper adopts qualitative research based on a critical review approach. It provides evidence of the GAI technology support in the mentioned areas. Appropriate use of emerging technology allows managers to transform manufacturing by optimising processes, improving product design, enhancing quality control, and contributing to overall efficiency and innovation in the industry. Simultaneously, GAI technologies facilitate predictive analytics to forecast and anticipate future demand, quality issues, and potential risks, improve a marketing strategy and identify market trends.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Management in Production and Services
ISSN
2543-6597
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
14
Strana od-do
76-89
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85182436211