Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Non-destructive Testing of CIPP Defects Using Machine Learning Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU152171" target="_blank" >RIV/00216305:26110/24:PU152171 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mater-tehnol.si/index.php/MatTech/article/view/1000" target="_blank" >https://mater-tehnol.si/index.php/MatTech/article/view/1000</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17222/mit.2023.1000" target="_blank" >10.17222/mit.2023.1000</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Non-destructive Testing of CIPP Defects Using Machine Learning Approach

  • Popis výsledku v původním jazyce

    In civil engineering, retrofitting actions involving repairs to pipes inside buildings and in extravehicular locations present complex and challenging tasks. Traditional repair procedures typically involve disassembling the surrounding structure, leading to technological pauses and potential work environment disruptions. An alternative approach to these procedures is using "cured-in-place pipes" (CIPP) technology for repairs. Unlike standard repairs, CIPP repairs do not require the disassembly of the surrounding structures; only the access points at the beginning and end of the pipe need to be accessible. However, this method introduces the possibility of different types of defects.1 This research aims to observe defects between the host and newly cured pipes. However, the presence of holes, cracks, or obstacles prevents attaining this desired close-fit state, ultimately reducing the life expectancy of the retrofitting action. This paper focuses on the non-destructive observation of these defects using the NDT Impact-Echo (IE) method. The study explicitly applies this method to CIPP composite pipe segments inside concrete host pipes, forming a testing polygon. Previous results have indicated that the mechanical behaviour of cured CIPP composite pipes can vary in stiffness depending on factors such as the curing procedure and environmental conditions.2 The change of acoustic parameters such as resonance frequency, attenuation and other features of typical IE signals can describe the stiffness evolution. This paper compares different sensors used for IE proposed testing, namely piezoceramic and microphone sensors. It evaluates their ability to distinguish between defects present in the body of the CIPP via a machine-learning approach using random tree classifiers.

  • Název v anglickém jazyce

    Non-destructive Testing of CIPP Defects Using Machine Learning Approach

  • Popis výsledku anglicky

    In civil engineering, retrofitting actions involving repairs to pipes inside buildings and in extravehicular locations present complex and challenging tasks. Traditional repair procedures typically involve disassembling the surrounding structure, leading to technological pauses and potential work environment disruptions. An alternative approach to these procedures is using "cured-in-place pipes" (CIPP) technology for repairs. Unlike standard repairs, CIPP repairs do not require the disassembly of the surrounding structures; only the access points at the beginning and end of the pipe need to be accessible. However, this method introduces the possibility of different types of defects.1 This research aims to observe defects between the host and newly cured pipes. However, the presence of holes, cracks, or obstacles prevents attaining this desired close-fit state, ultimately reducing the life expectancy of the retrofitting action. This paper focuses on the non-destructive observation of these defects using the NDT Impact-Echo (IE) method. The study explicitly applies this method to CIPP composite pipe segments inside concrete host pipes, forming a testing polygon. Previous results have indicated that the mechanical behaviour of cured CIPP composite pipes can vary in stiffness depending on factors such as the curing procedure and environmental conditions.2 The change of acoustic parameters such as resonance frequency, attenuation and other features of typical IE signals can describe the stiffness evolution. This paper compares different sensors used for IE proposed testing, namely piezoceramic and microphone sensors. It evaluates their ability to distinguish between defects present in the body of the CIPP via a machine-learning approach using random tree classifiers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materiali in tehnologije

  • ISSN

    1580-2949

  • e-ISSN

    1580-3414

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    SI - Slovinská republika

  • Počet stran výsledku

    6

  • Strana od-do

    13-17

  • Kód UT WoS článku

    001339304000003

  • EID výsledku v databázi Scopus

    2-s2.0-85207111355