Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU154991" target="_blank" >RIV/00216305:26110/24:PU154991 - isvavai.cz</a>
Výsledek na webu
<a href="https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20791" target="_blank" >https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20791</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/saj2.20791" target="_blank" >10.1002/saj2.20791</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification
Popis výsledku v původním jazyce
In recent decades, the determination of particle size distribution (PSD) using the laser diffraction method (LDM) has become increasingly common, supplanting traditional sedimentation techniques. Advances in everything from sample preparation to software settings have been realized globally, whether through recommendations from laser diffraction (LD) manufacturers or through user experiences. These developments seek to enhance accuracy and diminish the uncertainties associated with new methodologies. Particularly in the determination of PSD using LDM on various LD instruments and in comparison with the sieve-pipette method (SPM), discrepancies in PSD frequently arise. This article aims to mitigate these discrepancies by predefining parameters, specifically through the adjustment of LD software settings and sample preparation (employing a uniform set of dispersed samples in potassium hydroxide) on two widely used LD instruments for soil measurements: Mastersizer 3000 and Analysette 22. Additionally, these samples were analyzed using the traditional SPM (ISO 11277, 1998), with the results from LDM and SPM subsequently compared. The paper also explores the impact, range of user options, and limitations of predefined software settings on both LD instruments. Eighty soil samples were analyzed for PSD, collected from arable land in the cadastral area of Hru & scaron;ky, district of B & rcaron;eclav (Czech Republic), in spring 2022, from depths of 0- to 10-cm and 10- to 20-cm. Significant differences in PSD were confirmed, although the trends of the grain size distribution curves were very similar to those of LDM. Results from the Mastersizer underestimated the clay fraction by an average of 17% compared to SPM, at the expense of the sand fraction, whereas the silt fraction was underestimated by a maximum of 4%. Conversely, Analysette 22 overestimated the silt fraction by an average of 37% at the expense of the sand fraction, confirming only a slight difference in the clay
Název v anglickém jazyce
Comparison of laser diffractometry and pipetting methods for particle size determination: A pilot study on the implications of result discrepancies on soil classification
Popis výsledku anglicky
In recent decades, the determination of particle size distribution (PSD) using the laser diffraction method (LDM) has become increasingly common, supplanting traditional sedimentation techniques. Advances in everything from sample preparation to software settings have been realized globally, whether through recommendations from laser diffraction (LD) manufacturers or through user experiences. These developments seek to enhance accuracy and diminish the uncertainties associated with new methodologies. Particularly in the determination of PSD using LDM on various LD instruments and in comparison with the sieve-pipette method (SPM), discrepancies in PSD frequently arise. This article aims to mitigate these discrepancies by predefining parameters, specifically through the adjustment of LD software settings and sample preparation (employing a uniform set of dispersed samples in potassium hydroxide) on two widely used LD instruments for soil measurements: Mastersizer 3000 and Analysette 22. Additionally, these samples were analyzed using the traditional SPM (ISO 11277, 1998), with the results from LDM and SPM subsequently compared. The paper also explores the impact, range of user options, and limitations of predefined software settings on both LD instruments. Eighty soil samples were analyzed for PSD, collected from arable land in the cadastral area of Hru & scaron;ky, district of B & rcaron;eclav (Czech Republic), in spring 2022, from depths of 0- to 10-cm and 10- to 20-cm. Significant differences in PSD were confirmed, although the trends of the grain size distribution curves were very similar to those of LDM. Results from the Mastersizer underestimated the clay fraction by an average of 17% compared to SPM, at the expense of the sand fraction, whereas the silt fraction was underestimated by a maximum of 4%. Conversely, Analysette 22 overestimated the silt fraction by an average of 37% at the expense of the sand fraction, confirming only a slight difference in the clay
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
ISSN
0361-5995
e-ISSN
1435-0661
Svazek periodika
89
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
„“-„“
Kód UT WoS článku
001377183600001
EID výsledku v databázi Scopus
—