Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of elevated temperature on mechanical properties of ceramic brick and metakaolin waste-based geopolymer mortar

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F25%3APU156008" target="_blank" >RIV/00216305:26110/25:PU156008 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0950061825005793" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950061825005793</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.conbuildmat.2025.140431" target="_blank" >10.1016/j.conbuildmat.2025.140431</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of elevated temperature on mechanical properties of ceramic brick and metakaolin waste-based geopolymer mortar

  • Popis výsledku v původním jazyce

    The exponential growth of the construction industry has resulted in a corresponding increase in CO2 emissions, driven by rising demand for concrete and other materials. Consequently, there is a growing demand for sustainable building materials, including alkali-activated materials. From a safety perspective, alkali-activated material systems demonstrate superior fire durability characteristics compared to conventional concrete systems. This study examines the reaction of geopolymer mortar systems to elevated temperatures and the extent to which mechanical properties are influenced. The geopolymer compositions are comprised of two precursors: ceramic brick and metakaolin waste. There has been an increasing substitution of ceramic brick waste with waste metakaolin, with replacement ratios spanning a range from 20 % to 100 %. The alkaline activator comprised sodium hydroxide (NaOH) in a water-based solution; dosage based on the Na2O/Al2O3 ratio (1.00-1.04). The geopolymer system was investigated through the use of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) for the purposes of mineralogy and microstructural analysis. The residual compressive strength of geopolymer mortar specimens was determined following exposure to temperatures of 300, 600, and 900 degrees C. The findings indicate that the selected precursor materials are appropriate to produce temperature-resistant geopolymer mortar, as all compositions remained a strength of over 50 % and exhibited no spalling effect following a 900 degrees C treatment. Additionally, an impressive increase in compressive strength was observed when the precursor was solely ceramic brick waste, with a 101.8 % enhancement due to secondary geopolymerization, which induces a sintering effect leading to a more compact geopolymer microstructure.

  • Název v anglickém jazyce

    Effect of elevated temperature on mechanical properties of ceramic brick and metakaolin waste-based geopolymer mortar

  • Popis výsledku anglicky

    The exponential growth of the construction industry has resulted in a corresponding increase in CO2 emissions, driven by rising demand for concrete and other materials. Consequently, there is a growing demand for sustainable building materials, including alkali-activated materials. From a safety perspective, alkali-activated material systems demonstrate superior fire durability characteristics compared to conventional concrete systems. This study examines the reaction of geopolymer mortar systems to elevated temperatures and the extent to which mechanical properties are influenced. The geopolymer compositions are comprised of two precursors: ceramic brick and metakaolin waste. There has been an increasing substitution of ceramic brick waste with waste metakaolin, with replacement ratios spanning a range from 20 % to 100 %. The alkaline activator comprised sodium hydroxide (NaOH) in a water-based solution; dosage based on the Na2O/Al2O3 ratio (1.00-1.04). The geopolymer system was investigated through the use of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) for the purposes of mineralogy and microstructural analysis. The residual compressive strength of geopolymer mortar specimens was determined following exposure to temperatures of 300, 600, and 900 degrees C. The findings indicate that the selected precursor materials are appropriate to produce temperature-resistant geopolymer mortar, as all compositions remained a strength of over 50 % and exhibited no spalling effect following a 900 degrees C treatment. Additionally, an impressive increase in compressive strength was observed when the precursor was solely ceramic brick waste, with a 101.8 % enhancement due to secondary geopolymerization, which induces a sintering effect leading to a more compact geopolymer microstructure.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20100 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CONSTRUCTION AND BUILDING MATERIALS

  • ISSN

    0950-0618

  • e-ISSN

    1879-0526

  • Svazek periodika

    470

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    001435230900001

  • EID výsledku v databázi Scopus

    2-s2.0-85218456941