Individual tree crowns delineation using local maxima approach and seeded region growing technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU96647" target="_blank" >RIV/00216305:26210/11:PU96647 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Individual tree crowns delineation using local maxima approach and seeded region growing technique
Popis výsledku v původním jazyce
Remote sensing applications in forestry can profit from a rapid development of optical sensors. New hyperspectral sensors have very high spatial and spectral resolution and provide continuous spectral cover in visible and infrared spectral region. Applied algorithms should be suited to the new properties of the data to achieve its maximal advantage. Segmentation of the image into objects is a fundamental task in image processing. It is important in forestry applications of optical remote sensing as well. We are looking for a position of individual tree crowns. Such process traditionally involves two parts: 1) detection and 2) delineation phase. Local maxima approach and seeded region growing technique are presented as the key concepts. Furthermore improvements, namely histogram equalization and Voronoi diagram, are incorporated. Two independent datasets were processed and results of the segmentation are presented. Hyperspectral data with spatial resolution of 0.8m were found as a suita
Název v anglickém jazyce
Individual tree crowns delineation using local maxima approach and seeded region growing technique
Popis výsledku anglicky
Remote sensing applications in forestry can profit from a rapid development of optical sensors. New hyperspectral sensors have very high spatial and spectral resolution and provide continuous spectral cover in visible and infrared spectral region. Applied algorithms should be suited to the new properties of the data to achieve its maximal advantage. Segmentation of the image into objects is a fundamental task in image processing. It is important in forestry applications of optical remote sensing as well. We are looking for a position of individual tree crowns. Such process traditionally involves two parts: 1) detection and 2) delineation phase. Local maxima approach and seeded region growing technique are presented as the key concepts. Furthermore improvements, namely histogram equalization and Voronoi diagram, are incorporated. Two independent datasets were processed and results of the segmentation are presented. Hyperspectral data with spatial resolution of 0.8m were found as a suita
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
GK - Lesnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
GIS Ostrava 2011
ISBN
978-80-248-2366-9
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
49-59
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Ostrava
Datum konání akce
24. 1. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—