Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimations of Shape and Direction of an Air Jet Using Neural Networks.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU105017" target="_blank" >RIV/00216305:26210/13:PU105017 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimations of Shape and Direction of an Air Jet Using Neural Networks.

  • Popis výsledku v původním jazyce

    Analysis of airflow properties is an important step during validation of functionality of air distribution systems in a closed environment such as vents in car cabins. Optical visualization methods, based on imaging of the airflow visualization using smoke or fog, are often applied in such cases. The aim of this work is in an automation of processing of such images captured during visualization. It can be accomplished, besides special mathematical methods, using neural networks. We have employed a multilayer perceptron network for a detection of fog-containing areas in airflow images. Network learning was used and documented here for a recognition of the fog presence in individual pixels of the image based on colour intensities of the pixel neighbourhood. The fog detection was used for estimation of the jet shape. Hopfield network, which allows to relate the jet with one of the four basic flow directions, was applied consequently. The information about jet direction is important for fu

  • Název v anglickém jazyce

    Estimations of Shape and Direction of an Air Jet Using Neural Networks.

  • Popis výsledku anglicky

    Analysis of airflow properties is an important step during validation of functionality of air distribution systems in a closed environment such as vents in car cabins. Optical visualization methods, based on imaging of the airflow visualization using smoke or fog, are often applied in such cases. The aim of this work is in an automation of processing of such images captured during visualization. It can be accomplished, besides special mathematical methods, using neural networks. We have employed a multilayer perceptron network for a detection of fog-containing areas in airflow images. Network learning was used and documented here for a recognition of the fog presence in individual pixels of the image based on colour intensities of the pixel neighbourhood. The fog detection was used for estimation of the jet shape. Hopfield network, which allows to relate the jet with one of the four basic flow directions, was applied consequently. The information about jet direction is important for fu

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE01020020" target="_blank" >TE01020020: Centrum kompetence automobilového průmyslu Josefa Božka</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MENDEL 2013

  • ISBN

    978-80-214-4755-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    221-226

  • Název nakladatele

    Neuveden

  • Místo vydání

    Brno

  • Místo konání akce

    Brno University of Technology

  • Datum konání akce

    26. 6. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku