Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU107760" target="_blank" >RIV/00216305:26210/13:PU107760 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/full/10.1080/10255842.2013.847928" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/10255842.2013.847928</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10255842.2013.847928" target="_blank" >10.1080/10255842.2013.847928</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations
Popis výsledku v původním jazyce
Several constitutive models have been proposed for the description of mechanical behaviour of soft tissues containing collagen fibres. Some of the commonly used approaches accounting for the dispersion of fibre orientations are based on the summation of (mechanical) contributions of differently oriented fibre families. This leads to the need of numerical integration on the sphere surface, and the related numerical consumption is the main disadvantage of this category of constitutive models. The paper is focused on the comparison of various numerical integration methods applied to specific constitutive model applicable for arterial walls. Robustness and efficiency of several integration rules were tested with respect to application in finite element (FE) codes. Among all the analysed numerical integration rules, the best results were reached by Lebedev quadrature; the related parameters for the specific constitutive model are presented in the paper. The results were implemented into the commercial FE code ANSYS via user subroutines, and their applicability was demonstrated by an example of FE simulation with non-homogenous stress field.
Název v anglickém jazyce
Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations
Popis výsledku anglicky
Several constitutive models have been proposed for the description of mechanical behaviour of soft tissues containing collagen fibres. Some of the commonly used approaches accounting for the dispersion of fibre orientations are based on the summation of (mechanical) contributions of differently oriented fibre families. This leads to the need of numerical integration on the sphere surface, and the related numerical consumption is the main disadvantage of this category of constitutive models. The paper is focused on the comparison of various numerical integration methods applied to specific constitutive model applicable for arterial walls. Robustness and efficiency of several integration rules were tested with respect to application in finite element (FE) codes. Among all the analysed numerical integration rules, the best results were reached by Lebedev quadrature; the related parameters for the specific constitutive model are presented in the paper. The results were implemented into the commercial FE code ANSYS via user subroutines, and their applicability was demonstrated by an example of FE simulation with non-homogenous stress field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING
ISSN
1025-5842
e-ISSN
1476-8259
Svazek periodika
2014
Číslo periodika v rámci svazku
01
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000345372200002
EID výsledku v databázi Scopus
2-s2.0-84912116901