Transformations of Discrete Closure Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU98352" target="_blank" >RIV/00216305:26210/13:PU98352 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transformations of Discrete Closure Systems
Popis výsledku v původním jazyce
Discrete systems such as sets, monoids, groups are familiar categories. The internal structure of the latter two is defined by an algebraic operator. In this paper we concentrate on discrete systems that are characterized by unary operators; these include choice operators $CHOICE$, encountered in economics and social theory, and closure operators $CL$, encountered in discrete geometry and data mining. Because, for many arbitrary operators $OPER$, it is easy to induce a closure structure on the base set, closure operators play a central role in discrete systems. Our primary interest is in functions $f$ that map power sets $2^{UNIV}$ into power sets $2^{UNIV'}$, which are called transformations. Functions over continuous domains are usually characterized in terms of open sets. When the domains are discrete, closed sets seem more appropriate. In particular, we consider monotone transformations which are ``continuous'', or ``closed''. These can be used to establish criteria for assert
Název v anglickém jazyce
Transformations of Discrete Closure Systems
Popis výsledku anglicky
Discrete systems such as sets, monoids, groups are familiar categories. The internal structure of the latter two is defined by an algebraic operator. In this paper we concentrate on discrete systems that are characterized by unary operators; these include choice operators $CHOICE$, encountered in economics and social theory, and closure operators $CL$, encountered in discrete geometry and data mining. Because, for many arbitrary operators $OPER$, it is easy to induce a closure structure on the base set, closure operators play a central role in discrete systems. Our primary interest is in functions $f$ that map power sets $2^{UNIV}$ into power sets $2^{UNIV'}$, which are called transformations. Functions over continuous domains are usually characterized in terms of open sets. When the domains are discrete, closed sets seem more appropriate. In particular, we consider monotone transformations which are ``continuous'', or ``closed''. These can be used to establish criteria for assert
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Mathematica Hungarica
ISSN
0236-5294
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
20
Strana od-do
386-405
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—