Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU109115" target="_blank" >RIV/00216305:26210/14:PU109115 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11207-014-0482-1" target="_blank" >http://dx.doi.org/10.1007/s11207-014-0482-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11207-014-0482-1" target="_blank" >10.1007/s11207-014-0482-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence
Popis výsledku v původním jazyce
We construct the maps of temperatures, geometrical thicknesses, electron densities and gas pressures in a quiescent prominence. For this we use the RGB signal of the prominence visible-light emission detected during the total solar eclipse of 1 August 2008 in Mongolia and quasi-simultaneous H alpha spectra taken at OndA (TM) ejov Observatory. The method of disentangling the electron density and geometrical (effective) thickness was described by Jeji and Heinzel (Solar Phys. 254, 89 -aEuro parts per thousand 100, 2009) and is used here for the first time to analyse the spatial variations of prominence parameters. For the studied prominence we obtained the following range of parameters: temperature 6000 -aEuro parts per thousand 15 000 K, effective thickness 200 -aEuro parts per thousand 15000 km, electron density 5x10(9) -aEuro parts per thousand 10(11) cm(-3) and gas pressure 0.02 -aEuro parts per thousand 0.2 dyn cm(-2) (assuming a fixed ionisation degree n (p)/n (H)=0.5). The electron density increases towards the bottom of the prominence, which we explain by an enhanced photoionisation due to the incident solar radiation. To confirm this, we construct a two-dimensional radiative-transfer model with realistic prominence illumination.
Název v anglickém jazyce
Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence Multi-Wavelength Eclipse Observations of a Quiescent Prominence
Popis výsledku anglicky
We construct the maps of temperatures, geometrical thicknesses, electron densities and gas pressures in a quiescent prominence. For this we use the RGB signal of the prominence visible-light emission detected during the total solar eclipse of 1 August 2008 in Mongolia and quasi-simultaneous H alpha spectra taken at OndA (TM) ejov Observatory. The method of disentangling the electron density and geometrical (effective) thickness was described by Jeji and Heinzel (Solar Phys. 254, 89 -aEuro parts per thousand 100, 2009) and is used here for the first time to analyse the spatial variations of prominence parameters. For the studied prominence we obtained the following range of parameters: temperature 6000 -aEuro parts per thousand 15 000 K, effective thickness 200 -aEuro parts per thousand 15000 km, electron density 5x10(9) -aEuro parts per thousand 10(11) cm(-3) and gas pressure 0.02 -aEuro parts per thousand 0.2 dyn cm(-2) (assuming a fixed ionisation degree n (p)/n (H)=0.5). The electron density increases towards the bottom of the prominence, which we explain by an enhanced photoionisation due to the incident solar radiation. To confirm this, we construct a two-dimensional radiative-transfer model with realistic prominence illumination.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Solar Physics
ISSN
0038-0938
e-ISSN
1573-093X
Svazek periodika
2014 (289)
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
2487-2501
Kód UT WoS článku
000334201400006
EID výsledku v databázi Scopus
2-s2.0-84897570219