Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spray Cooling Unit for Heat Treatment of Stainless Steel Sheets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU109131" target="_blank" >RIV/00216305:26210/14:PU109131 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.scopus.com/record/display.url?eid=2-s2.0-84904035281&origin=resultslist&sort=plf-f&src=s&st1=hnízdil&sid=C4F5B65991CF15C6559F2A1962AE4A66.ZmAySxCHIBxxTXbnsoe5w%3a340&sot=b&sdt=b&sl=20&s=AUTHOR-NAME%28hnízdil%29&relpos=0&relpos=0&citeCnt=0&sear" target="_blank" >http://www.scopus.com/record/display.url?eid=2-s2.0-84904035281&origin=resultslist&sort=plf-f&src=s&st1=hnízdil&sid=C4F5B65991CF15C6559F2A1962AE4A66.ZmAySxCHIBxxTXbnsoe5w%3a340&sot=b&sdt=b&sl=20&s=AUTHOR-NAME%28hnízdil%29&relpos=0&relpos=0&citeCnt=0&sear</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4028/www.scientific.net/AMR.936.1720" target="_blank" >10.4028/www.scientific.net/AMR.936.1720</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spray Cooling Unit for Heat Treatment of Stainless Steel Sheets

  • Popis výsledku v původním jazyce

    Stainless steel sheets are successively heated to a temperature of 1150degree of Celsia and cooled until ambient temperature during the production process. Requirements for high cooling rates of stainless steel sheets producers lead to use water as a cooling medium. The information about cooling intensity (heat transfer coefficient) of different nozzles configurations is necessary for designing cooling sections. Although many researchers deal with water spray cooling, actually a general correlation for predicting heat transfer coefficient for wide range of nozzles configurations does not exists. That is the reason why heat transfer coefficient for different nozzles configurations can be only obtained by laboratory measurements. Heat transfer coefficient is mostly influenced by water impingement density and impact velocity. However other factors e.g. water temperature and velocity of the sheet can influence the heat transfer coefficient. Optimized design of the cooling unit with high cooling intensity and low water consumption was achieved by appropriate choice of these parameters. The moving experimental sheet was cooled from a temperature of 900 degree of Celsia to a temperature of 50 degree of Celsia with various configurations of nozzles. The tests shown that heat transfer coefficient was increasing with water impingement density and impact velocity. Increasing water temperature from 20 degree of Celsia to 80 degree of Celsia caused a decrease of the heat transfer coefficient and Leidenfrost temperature. The effect of velocity is negligible when velocities are between 25 and 100 m/min. The cooling unit was designed according to laboratory measurements to fulfill the stainless steel producer's requirements. The measurements which were done in an industrial plant confirmed the accuracy of heat transfer coefficient obtained in the laboratory. The maximum difference between laboratory and plant measurements was 15%.

  • Název v anglickém jazyce

    Spray Cooling Unit for Heat Treatment of Stainless Steel Sheets

  • Popis výsledku anglicky

    Stainless steel sheets are successively heated to a temperature of 1150degree of Celsia and cooled until ambient temperature during the production process. Requirements for high cooling rates of stainless steel sheets producers lead to use water as a cooling medium. The information about cooling intensity (heat transfer coefficient) of different nozzles configurations is necessary for designing cooling sections. Although many researchers deal with water spray cooling, actually a general correlation for predicting heat transfer coefficient for wide range of nozzles configurations does not exists. That is the reason why heat transfer coefficient for different nozzles configurations can be only obtained by laboratory measurements. Heat transfer coefficient is mostly influenced by water impingement density and impact velocity. However other factors e.g. water temperature and velocity of the sheet can influence the heat transfer coefficient. Optimized design of the cooling unit with high cooling intensity and low water consumption was achieved by appropriate choice of these parameters. The moving experimental sheet was cooled from a temperature of 900 degree of Celsia to a temperature of 50 degree of Celsia with various configurations of nozzles. The tests shown that heat transfer coefficient was increasing with water impingement density and impact velocity. Increasing water temperature from 20 degree of Celsia to 80 degree of Celsia caused a decrease of the heat transfer coefficient and Leidenfrost temperature. The effect of velocity is negligible when velocities are between 25 and 100 m/min. The cooling unit was designed according to laboratory measurements to fulfill the stainless steel producer's requirements. The measurements which were done in an industrial plant confirmed the accuracy of heat transfer coefficient obtained in the laboratory. The maximum difference between laboratory and plant measurements was 15%.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Materials Research

  • ISSN

    1022-6680

  • e-ISSN

    1662-8985

  • Svazek periodika

    936

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    5

  • Strana od-do

    1720-1724

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84904035281