Beams on Elastic Foundation Using Modified Bettis Theorem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU109542" target="_blank" >RIV/00216305:26210/14:PU109542 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0020740314002422" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020740314002422</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijmecsci.2014.06.014" target="_blank" >10.1016/j.ijmecsci.2014.06.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beams on Elastic Foundation Using Modified Bettis Theorem
Popis výsledku v původním jazyce
In this paper, the restricted form of the principle of quasi work – the so-called modified Bettis Theorem – is used for developing an alternative analytical solution of beams on an elastic foundation. A brief review of this principle is provided along with the reminder of the classical Winklers model. A methodology is based on the calculation of the deflection of beam on an elastic foundation from the deflection of a reference beam which is topologically equivalent. Fundamental formulae for the reference beam on an elastic foundation are derived and thoroughly discussed. Applying the modified Bettis theorem, these formulae can be used for analysis of any arbitrary topologically equivalent beam on an elastic foundation. The applicability of this methodology is proved and a detailed guidance for its use is provided as well. The methodology is illustrated by three representative examples. The beam on an elastic foundation is a structure which is often used in many areas of technical practice including civil engineering, aerospace engineering etc; thus, the presented alternative way of its analytical solution might be found helpful, mainly for quick calculation and for its simple algorithmization.
Název v anglickém jazyce
Beams on Elastic Foundation Using Modified Bettis Theorem
Popis výsledku anglicky
In this paper, the restricted form of the principle of quasi work – the so-called modified Bettis Theorem – is used for developing an alternative analytical solution of beams on an elastic foundation. A brief review of this principle is provided along with the reminder of the classical Winklers model. A methodology is based on the calculation of the deflection of beam on an elastic foundation from the deflection of a reference beam which is topologically equivalent. Fundamental formulae for the reference beam on an elastic foundation are derived and thoroughly discussed. Applying the modified Bettis theorem, these formulae can be used for analysis of any arbitrary topologically equivalent beam on an elastic foundation. The applicability of this methodology is proved and a detailed guidance for its use is provided as well. The methodology is illustrated by three representative examples. The beam on an elastic foundation is a structure which is often used in many areas of technical practice including civil engineering, aerospace engineering etc; thus, the presented alternative way of its analytical solution might be found helpful, mainly for quick calculation and for its simple algorithmization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES
ISSN
0020-7403
e-ISSN
1879-2162
Svazek periodika
88
Číslo periodika v rámci svazku
2014
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
17-24
Kód UT WoS článku
000344428000003
EID výsledku v databázi Scopus
2-s2.0-84905571737