Multi-Scale Gaussian Normalization for Solar Image Processing Multi-Scale Gaussian Normalization for Solar Image Processing Multi-Scale Gaussian Normalization for Solar Image Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU110653" target="_blank" >RIV/00216305:26210/14:PU110653 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11207-014-0523-9" target="_blank" >http://dx.doi.org/10.1007/s11207-014-0523-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11207-014-0523-9" target="_blank" >10.1007/s11207-014-0523-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Scale Gaussian Normalization for Solar Image Processing Multi-Scale Gaussian Normalization for Solar Image Processing Multi-Scale Gaussian Normalization for Solar Image Processing
Popis výsledku v původním jazyce
Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information, often hidden within the data, without introducing artefacts or bias. It is also important that any process be computationally efficient, particularly given the fine spatial and temporal resolution of Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO), and consideration of future higher resolution observations. A very efficient process is described here, which is based on localised normalising of the data at many different spatial scales. The method reveals information at the finest scales whilst maintaining enough of the larger-scale information to provide context. It also intrinsically flattens noisy regions and can reveal structure in off-limb regions out to the edge of the field of view. We also applied the method successfully to a white-light coronagraph observation.
Název v anglickém jazyce
Multi-Scale Gaussian Normalization for Solar Image Processing Multi-Scale Gaussian Normalization for Solar Image Processing Multi-Scale Gaussian Normalization for Solar Image Processing
Popis výsledku anglicky
Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information, often hidden within the data, without introducing artefacts or bias. It is also important that any process be computationally efficient, particularly given the fine spatial and temporal resolution of Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO), and consideration of future higher resolution observations. A very efficient process is described here, which is based on localised normalising of the data at many different spatial scales. The method reveals information at the finest scales whilst maintaining enough of the larger-scale information to provide context. It also intrinsically flattens noisy regions and can reveal structure in off-limb regions out to the edge of the field of view. We also applied the method successfully to a white-light coronagraph observation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Solar Physics
ISSN
0038-0938
e-ISSN
1573-093X
Svazek periodika
2014 (289)
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
2945-2955
Kód UT WoS článku
000336334900008
EID výsledku v databázi Scopus
2-s2.0-84901315291