Droplet dynamics in internally mixed twin-fluid spray
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU111733" target="_blank" >RIV/00216305:26210/14:PU111733 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/82/27290" target="_blank" >http://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/82/27290</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2495/AFM140201" target="_blank" >10.2495/AFM140201</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Droplet dynamics in internally mixed twin-fluid spray
Popis výsledku v původním jazyce
Effervescent atomizers are based on mixing of gas with liquid prior to discharge. We describe the discharge of two-phase mixture and movement of droplets in gas jet using simple theoretical models, following with elucidation of droplets dynamics using experimental data for an effervescent spray. Discharge of the liquid-gas flow from the nozzle is described using a combination of two discharge models. Depending on operation conditions, 59–64% of the total discharged mass corresponds to Separated Flow Model and the rest to Homogeneous Flow Model. Discharge velocity of the liquid reaches 12–27% of the gas exit velocity. The liquid-gas velocity ratio is negatively correlated with gas-to-liquid mass ratio (GLR) and positively correlated with inlet pressure. Radial profiles of axial droplet velocity, as measured using Phase Doppler anemometry, are axisymmetric bell-shaped with a maximum in the centreline analogous to the profile defined for a simple gas jet which however is more flat near the centreline and decline much faster for higher radial positions. Mean velocity in particular spray position varies with particle size within a range of several m/s typically. This variation is closely related with particle Stokes number, Stk. Variation of mean velocity with operation pressure and GLR can be explained with discharge conditions; higher pressures and GLRs lead to higher discharge velocities that are reflected in the spray downstream. Stokes numbers are generally << 1 for particle sizes Dp up to 10 um so they smoothly follow the gas flow. Stk for size 10 um <Dp< 50 um depends on flow regime and position in the spray and can be found typically within a range 0.1 < Stk < 10. Particles with Dp larger than 100 um have usually Stk > 10 and very weakly interact with the gas.
Název v anglickém jazyce
Droplet dynamics in internally mixed twin-fluid spray
Popis výsledku anglicky
Effervescent atomizers are based on mixing of gas with liquid prior to discharge. We describe the discharge of two-phase mixture and movement of droplets in gas jet using simple theoretical models, following with elucidation of droplets dynamics using experimental data for an effervescent spray. Discharge of the liquid-gas flow from the nozzle is described using a combination of two discharge models. Depending on operation conditions, 59–64% of the total discharged mass corresponds to Separated Flow Model and the rest to Homogeneous Flow Model. Discharge velocity of the liquid reaches 12–27% of the gas exit velocity. The liquid-gas velocity ratio is negatively correlated with gas-to-liquid mass ratio (GLR) and positively correlated with inlet pressure. Radial profiles of axial droplet velocity, as measured using Phase Doppler anemometry, are axisymmetric bell-shaped with a maximum in the centreline analogous to the profile defined for a simple gas jet which however is more flat near the centreline and decline much faster for higher radial positions. Mean velocity in particular spray position varies with particle size within a range of several m/s typically. This variation is closely related with particle Stokes number, Stk. Variation of mean velocity with operation pressure and GLR can be explained with discharge conditions; higher pressures and GLRs lead to higher discharge velocities that are reflected in the spray downstream. Stokes numbers are generally << 1 for particle sizes Dp up to 10 um so they smoothly follow the gas flow. Stk for size 10 um <Dp< 50 um depends on flow regime and position in the spray and can be found typically within a range 0.1 < Stk < 10. Particles with Dp larger than 100 um have usually Stk > 10 and very weakly interact with the gas.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP101%2F11%2F1264" target="_blank" >GAP101/11/1264: Vlastnosti spreje nízkotlakých dvoumédiových trysek s vnitřním směšováním provozovaných s kapalinami o velkém rozsahu viskozity</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Fluid Mechanics X
ISBN
978-1-84564-791-9
ISSN
1743-3533
e-ISSN
—
Počet stran výsledku
12
Strana od-do
227-238
Název nakladatele
WIT Press
Místo vydání
A Coruňa, Spain
Místo konání akce
A Coruña
Datum konání akce
1. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—