Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU115358" target="_blank" >RIV/00216305:26210/15:PU115358 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4172/2168-9679.1000234" target="_blank" >http://dx.doi.org/10.4172/2168-9679.1000234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4172/2168-9679.1000234" target="_blank" >10.4172/2168-9679.1000234</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method
Popis výsledku v původním jazyce
A novel Cartesian grid discretization method is developed to simulate two and three dimensional problems, governed by partial differential equations. In the present approach, the grid points lie exactly onto the surface of an immersed object or of the domain's boundaries, allowing for accurate imposition of the surface boundary conditions. This is well demonstrated for symmetric objects, but it can be also extended for non-symmetric shapes. The method intrinsically possesses higher accuracy than the conventional body fitted or Immersed Boundary Methods, since the implemented grid is universally orthogonal and the boundary conditions are imposed precisely onto the surface, without any interpolation or tuning of the governing equations. Conformal Cartesian Grids bridge the topology of Cartesian grid methods with the treatment of the surface boundary conditions, which is adopted in conventional bodyfitted grid approaches. Emphasis is given in a two dimensional fluid dynamics problem to de
Název v anglickém jazyce
Conformal Cartesian Grids for Symmetric Bodies: A Novel Boundary Fitted Grid Method
Popis výsledku anglicky
A novel Cartesian grid discretization method is developed to simulate two and three dimensional problems, governed by partial differential equations. In the present approach, the grid points lie exactly onto the surface of an immersed object or of the domain's boundaries, allowing for accurate imposition of the surface boundary conditions. This is well demonstrated for symmetric objects, but it can be also extended for non-symmetric shapes. The method intrinsically possesses higher accuracy than the conventional body fitted or Immersed Boundary Methods, since the implemented grid is universally orthogonal and the boundary conditions are imposed precisely onto the surface, without any interpolation or tuning of the governing equations. Conformal Cartesian Grids bridge the topology of Cartesian grid methods with the treatment of the surface boundary conditions, which is adopted in conventional bodyfitted grid approaches. Emphasis is given in a two dimensional fluid dynamics problem to de
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JU - Aeronautika, aerodynamika, letadla
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Journal of Applied & Computational Mathematics
ISSN
2168-9679
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—