Numerical Modeling of Oxygen Enhanced Combustion and Transient Heating Characteristics in a Reheating Furnace
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU116710" target="_blank" >RIV/00216305:26210/15:PU116710 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Modeling of Oxygen Enhanced Combustion and Transient Heating Characteristics in a Reheating Furnace
Popis výsledku v původním jazyce
In this work an experimental and numerical investigation of oxygen enhanced combustion (OEC) was done for different oxygen concentrations on a 750 kW lab-scale furnace. Temperatures in the furnace and heat fluxes to the walls were measured and used to validate the CFD model especially the chemical reaction mechanism for applicability in OEC. Flame temperature and shape were in good agreement as well as the heat fluxes to the walls for all combustion cases. An increase of the furnace efficiency was determined from 61% for combustion with air and 73.4% for OEC with an O2 concentration of 30.8vol% in the oxidizer. The same trend was predicted by the numerical simulations. Additionally an industrial walking hearth furnace to reheat steel billets was simulated by the CFD model for air-fuel and OEC with an enrichment level of 25vol% O2. Furnace operation revealed a fuel saving of 8% compared to the air case. The transient simulation of the billets showed that the similar billet surface temperature was achie
Název v anglickém jazyce
Numerical Modeling of Oxygen Enhanced Combustion and Transient Heating Characteristics in a Reheating Furnace
Popis výsledku anglicky
In this work an experimental and numerical investigation of oxygen enhanced combustion (OEC) was done for different oxygen concentrations on a 750 kW lab-scale furnace. Temperatures in the furnace and heat fluxes to the walls were measured and used to validate the CFD model especially the chemical reaction mechanism for applicability in OEC. Flame temperature and shape were in good agreement as well as the heat fluxes to the walls for all combustion cases. An increase of the furnace efficiency was determined from 61% for combustion with air and 73.4% for OEC with an O2 concentration of 30.8vol% in the oxidizer. The same trend was predicted by the numerical simulations. Additionally an industrial walking hearth furnace to reheat steel billets was simulated by the CFD model for air-fuel and OEC with an enrichment level of 25vol% O2. Furnace operation revealed a fuel saving of 8% compared to the air case. The transient simulation of the billets showed that the similar billet surface temperature was achie
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JE - Nejaderná energetika, spotřeba a užití energie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TE02000236" target="_blank" >TE02000236: Centrum kompetence pro energetické využití odpadů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Australian Combustion Symposium
ISBN
—
ISSN
1839-8162
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Melbourne
Datum konání akce
7. 12. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—