Verification and Validation of Tube Bundle Cross Flow CFD Analysis by Means of Reynolds and Strouhal Numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU123072" target="_blank" >RIV/00216305:26210/16:PU123072 - isvavai.cz</a>
Výsledek na webu
<a href="http://icmt24.com/e_files/content/Book%20of%20Abstracts.pdf" target="_blank" >http://icmt24.com/e_files/content/Book%20of%20Abstracts.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Verification and Validation of Tube Bundle Cross Flow CFD Analysis by Means of Reynolds and Strouhal Numbers
Popis výsledku v původním jazyce
One of the key goals of heat exchanger design is the maximization of heat transfer. Effectivity of the heat transfer in tube bundles can be increased by fluid vorticity. The turbulences cause disintegration of laminar sublayers and they also homogenize fluid streams. Both of the processes improve the heat transfer. Unfortunately, increasing turbulence can cause force responses on the tubes and vibrations that are in many cases detrimental to the equipment. The vibrations can be accurately predicted using CFD (computational fluid dynamics) analysis. The numerical analyses have been developing hand in hand with the development of information technologies in the 21st century and they have also a significant impact on mechanical engineering. However, good application of those analyses is conditioned by choice of a physical layer, sufficient model, and meshes. Additionally, the results should be verified and used method validated. This may be achieved by comparing experimental data (dimensionless Reynolds
Název v anglickém jazyce
Verification and Validation of Tube Bundle Cross Flow CFD Analysis by Means of Reynolds and Strouhal Numbers
Popis výsledku anglicky
One of the key goals of heat exchanger design is the maximization of heat transfer. Effectivity of the heat transfer in tube bundles can be increased by fluid vorticity. The turbulences cause disintegration of laminar sublayers and they also homogenize fluid streams. Both of the processes improve the heat transfer. Unfortunately, increasing turbulence can cause force responses on the tubes and vibrations that are in many cases detrimental to the equipment. The vibrations can be accurately predicted using CFD (computational fluid dynamics) analysis. The numerical analyses have been developing hand in hand with the development of information technologies in the 21st century and they have also a significant impact on mechanical engineering. However, good application of those analyses is conditioned by choice of a physical layer, sufficient model, and meshes. Additionally, the results should be verified and used method validated. This may be achieved by comparing experimental data (dimensionless Reynolds
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JE - Nejaderná energetika, spotřeba a užití energie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TE02000236" target="_blank" >TE02000236: Centrum kompetence pro energetické využití odpadů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů