The Relation Between Thermal Wedge and Thermal Boundary Conditions for the Load-Carrying Capacity of a Rectangular Pad and a Slider With Parallel Gaps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU126135" target="_blank" >RIV/00216305:26210/16:PU126135 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1115/1.4031515" target="_blank" >http://dx.doi.org/10.1115/1.4031515</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4031515" target="_blank" >10.1115/1.4031515</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Relation Between Thermal Wedge and Thermal Boundary Conditions for the Load-Carrying Capacity of a Rectangular Pad and a Slider With Parallel Gaps
Popis výsledku v původním jazyce
In order to understand the load-carrying mechanism of thermal wedge, numerical results for a rectangular pad and a slider with parallel gaps under four types of surface boundary temperature conditions are presented. Two assumptions of rigid-solid and smooth-surface were used to exclude the effects of both thermal deformation and micro-asperity. The relation between thermal wedge and thermal boundary conditions is revealed. The load-carrying mechanism of parallel gaps is explained with the thermal wedge derived not only from the surface temperature difference (STD) as proposed by Cameron but also from the film temperature gradient (FTG) independent of STD. It is also pointed out that in numerical analysis, the very small viscosity-temperature coefficient would result in high oil temperature and therefore, the predicted loading capacity from thermal density wedge would be extremely enlarged.
Název v anglickém jazyce
The Relation Between Thermal Wedge and Thermal Boundary Conditions for the Load-Carrying Capacity of a Rectangular Pad and a Slider With Parallel Gaps
Popis výsledku anglicky
In order to understand the load-carrying mechanism of thermal wedge, numerical results for a rectangular pad and a slider with parallel gaps under four types of surface boundary temperature conditions are presented. Two assumptions of rigid-solid and smooth-surface were used to exclude the effects of both thermal deformation and micro-asperity. The relation between thermal wedge and thermal boundary conditions is revealed. The load-carrying mechanism of parallel gaps is explained with the thermal wedge derived not only from the surface temperature difference (STD) as proposed by Cameron but also from the film temperature gradient (FTG) independent of STD. It is also pointed out that in numerical analysis, the very small viscosity-temperature coefficient would result in high oil temperature and therefore, the predicted loading capacity from thermal density wedge would be extremely enlarged.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ASME Transaction, Journal of Tribology
ISSN
0742-4787
e-ISSN
1528-8897
Svazek periodika
138
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
000371388800030
EID výsledku v databázi Scopus
2-s2.0-84945919558