Experimental validation of mathematical model for small air compressor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU122850" target="_blank" >RIV/00216305:26210/17:PU122850 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.epj-conferences.org/articles/epjconf/abs/2017/12/epjconf_efm2017_02133/epjconf_efm2017_02133.html" target="_blank" >https://www.epj-conferences.org/articles/epjconf/abs/2017/12/epjconf_efm2017_02133/epjconf_efm2017_02133.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/201714302133" target="_blank" >10.1051/epjconf/201714302133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental validation of mathematical model for small air compressor
Popis výsledku v původním jazyce
Development process of reciprocating compressors can be simplified by using simulation tools. Modelling of a compressor requires a trade-off between computational effort and accuracy of desired results. This paper presents experimental validation of the simulation tool, which can be used to predict compressor behaviour under different working conditions. The mathematical model provides fast results with very good accuracy, however the model must be calibrated for a certain type of compressor. Small air compressor was used to validate an in-house simulation tool, which is based on mass and energy conservation in a control volume. The simulation tool calculates pressure and temperature history inside the cylinder, valve characteristics, mass flow and heat losses during the cycle of the compressor. A test bench for the compressor consisted of pressure sensors on both discharge and suction side, temperature sensor on discharge side and flow meter with calorimetric principle sensor.
Název v anglickém jazyce
Experimental validation of mathematical model for small air compressor
Popis výsledku anglicky
Development process of reciprocating compressors can be simplified by using simulation tools. Modelling of a compressor requires a trade-off between computational effort and accuracy of desired results. This paper presents experimental validation of the simulation tool, which can be used to predict compressor behaviour under different working conditions. The mathematical model provides fast results with very good accuracy, however the model must be calibrated for a certain type of compressor. Small air compressor was used to validate an in-house simulation tool, which is based on mass and energy conservation in a control volume. The simulation tool calculates pressure and temperature history inside the cylinder, valve characteristics, mass flow and heat losses during the cycle of the compressor. A test bench for the compressor consisted of pressure sensors on both discharge and suction side, temperature sensor on discharge side and flow meter with calorimetric principle sensor.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences
ISBN
—
ISSN
2100-014X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
EDP Sciences
Místo vydání
France
Místo konání akce
Mariánské lázně
Datum konání akce
15. 11. 2016
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
000407743800135