Position-Dependent Response Simulation of Machine Tool Using State-Space Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU126022" target="_blank" >RIV/00216305:26210/17:PU126022 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mmscience.eu/december-2017.html" target="_blank" >http://www.mmscience.eu/december-2017.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2017_12_201799" target="_blank" >10.17973/MMSJ.2017_12_201799</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Position-Dependent Response Simulation of Machine Tool Using State-Space Models
Popis výsledku v původním jazyce
The stability of a machining process is a function of the dynamic response between the spindle and table, which varies within the machine work volume. This paper deals with computationally efficient methodology to valuate and simulate dynamic performance of the machine tool. A positiondependent virtual model is assembled using finite element model reduced via component mode synthesis and transformed to a state-space multi-input-multi-output system. Combination of these techniques allow time-efficient response simulations with significantly less computational effort than conventionally used full finite element models. The presented approach can be used to create position-dependent dynamic stiffness map within the work volume used to predict and reduce unstable behaviour during operation. Furthermore, these techniques are not reserved for machine tools exclusively and can be used in wider spectrum of technical applications, that require time-efficient response simulations.
Název v anglickém jazyce
Position-Dependent Response Simulation of Machine Tool Using State-Space Models
Popis výsledku anglicky
The stability of a machining process is a function of the dynamic response between the spindle and table, which varies within the machine work volume. This paper deals with computationally efficient methodology to valuate and simulate dynamic performance of the machine tool. A positiondependent virtual model is assembled using finite element model reduced via component mode synthesis and transformed to a state-space multi-input-multi-output system. Combination of these techniques allow time-efficient response simulations with significantly less computational effort than conventionally used full finite element models. The presented approach can be used to create position-dependent dynamic stiffness map within the work volume used to predict and reduce unstable behaviour during operation. Furthermore, these techniques are not reserved for machine tools exclusively and can be used in wider spectrum of technical applications, that require time-efficient response simulations.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
December
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
2127
Strana od-do
2120-2127
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85038094291