Heat Exchanger Network Synthesis Considering Risk Assessment for Entire Network Lifetime
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU126886" target="_blank" >RIV/00216305:26210/17:PU126886 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3303/CET1757052" target="_blank" >http://dx.doi.org/10.3303/CET1757052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET1757052" target="_blank" >10.3303/CET1757052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heat Exchanger Network Synthesis Considering Risk Assessment for Entire Network Lifetime
Popis výsledku v původním jazyce
Considering risk assessment at the early-stage of Heat Exchanger Network (HEN) synthesis can significantly contribute to obtaining inherently safer design. The development of quantitative safety metrics at the early stage of design are still at the beginning steps of development. The risk is composed of failure frequency and the severity of the consequences. There are numerous methods for determining the severity of the consequences for a certain deviation event and there are mainly index-based methods for determining the severity when inherent safety is analysed. The failure of frequency, however, is usually assumed as a constant during the entire lifetime. Observing Bathtub curve it can be concluded that different type of failures dominates at different periods during a lifetime. Therefore, considering unified failure frequency during the entire lifetime is quite problematic. The aim of this study is to obtain HEN design that exhibits improved safety during the entire lifetime. The previously developed mixed-integer nonlinear programming (MINLP) model for HEN synthesis with embedded risk assessment was upgraded to a model that considers the changing failure frequency during the lifetime. A multi-period MINLP model was developed that accounts for different failure rate within each period of the lifetime. At least three periods should be considered (early stage, random and wear out failures). More reliable results regarding HEN design with enhance safety can be obtained by considering the mentioned different failure rates and different aspects of safety (toxicity, flammability, explosiveness). The designs obtained by the enhanced HEN synthesis method are safer and economically reliable. © Copyright 2017, AIDIC Servizi S.r.l.
Název v anglickém jazyce
Heat Exchanger Network Synthesis Considering Risk Assessment for Entire Network Lifetime
Popis výsledku anglicky
Considering risk assessment at the early-stage of Heat Exchanger Network (HEN) synthesis can significantly contribute to obtaining inherently safer design. The development of quantitative safety metrics at the early stage of design are still at the beginning steps of development. The risk is composed of failure frequency and the severity of the consequences. There are numerous methods for determining the severity of the consequences for a certain deviation event and there are mainly index-based methods for determining the severity when inherent safety is analysed. The failure of frequency, however, is usually assumed as a constant during the entire lifetime. Observing Bathtub curve it can be concluded that different type of failures dominates at different periods during a lifetime. Therefore, considering unified failure frequency during the entire lifetime is quite problematic. The aim of this study is to obtain HEN design that exhibits improved safety during the entire lifetime. The previously developed mixed-integer nonlinear programming (MINLP) model for HEN synthesis with embedded risk assessment was upgraded to a model that considers the changing failure frequency during the lifetime. A multi-period MINLP model was developed that accounts for different failure rate within each period of the lifetime. At least three periods should be considered (early stage, random and wear out failures). More reliable results regarding HEN design with enhance safety can be obtained by considering the mentioned different failure rates and different aspects of safety (toxicity, flammability, explosiveness). The designs obtained by the enhanced HEN synthesis method are safer and economically reliable. © Copyright 2017, AIDIC Servizi S.r.l.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Chemical Engineering Transactions
ISBN
978-88-95608-51-8
ISSN
2283-9216
e-ISSN
—
Počet stran výsledku
6
Strana od-do
307-312
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Milano
Datum konání akce
28. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—