Internal flow and air core dynamics in Simplex and Spill-return pressure-swirl atomizers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU127527" target="_blank" >RIV/00216305:26210/18:PU127527 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0017931017356879" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0017931017356879</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.090" target="_blank" >10.1016/j.ijheatmasstransfer.2018.02.090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Internal flow and air core dynamics in Simplex and Spill-return pressure-swirl atomizers
Popis výsledku v původním jazyce
Spill-return (SR) atomizers enhance the construction of Simplex atomizers by addition of a passage in the rear wall of the swirl chamber through which the liquid can be spilled away. It allows to discharge the liquid always at a high pressure and to spray well over a wide flow rate range. The spray characteristics of pressure-swirl atomizers are strongly linked to the internal flow, and the air-core dynamics affect the spray stability. The SR atomizers are rarely investigated and their internal flow is not studied at all. Therefore, in this paper, the Simplex and SR atomizers with a central SR orifice were examined comparatively. Transparent polymethyl methacrylate (PMMA) models of both atomizers scaled 10:1 were manufactured for the visualization and velocity measurements of the flow inside the swirl chamber. The atomizers were examined by means of high-speed imaging, laser-Doppler anemometry and computational fluid dynamics tools. The experimental and numerical results were analysed and compared in terms of the spray cone angle (SCA), discharge coefficient (CD), and the morphology and temporal stability of the air core. The internal flow characteristics between the original and the model were matched using the Reynolds, Swirl and Froude numbers. The test conditions were limited to inlet Reynolds numbers from 750 to 1750. The results show that the addition of the spill passage strongly affects the internal flow even when the spill-line is closed. The air core in the Simplex atomizer is fully developed and stable for all flow regimes. The SR atomizer behaved differently; with the closed spill-line (spill-to-feed ratio, SFR = 0), the air core does not form at all; therefore, the spray is unstable. The reason is that the liquid, contained in the spill-line, is drained back into the swirl chamber due to a recirculation zone found inside the spill-line. Increasing the SFR stabilizes the internal flow, and the spray becomes stable if SFR > 0.15. The air core begins to f
Název v anglickém jazyce
Internal flow and air core dynamics in Simplex and Spill-return pressure-swirl atomizers
Popis výsledku anglicky
Spill-return (SR) atomizers enhance the construction of Simplex atomizers by addition of a passage in the rear wall of the swirl chamber through which the liquid can be spilled away. It allows to discharge the liquid always at a high pressure and to spray well over a wide flow rate range. The spray characteristics of pressure-swirl atomizers are strongly linked to the internal flow, and the air-core dynamics affect the spray stability. The SR atomizers are rarely investigated and their internal flow is not studied at all. Therefore, in this paper, the Simplex and SR atomizers with a central SR orifice were examined comparatively. Transparent polymethyl methacrylate (PMMA) models of both atomizers scaled 10:1 were manufactured for the visualization and velocity measurements of the flow inside the swirl chamber. The atomizers were examined by means of high-speed imaging, laser-Doppler anemometry and computational fluid dynamics tools. The experimental and numerical results were analysed and compared in terms of the spray cone angle (SCA), discharge coefficient (CD), and the morphology and temporal stability of the air core. The internal flow characteristics between the original and the model were matched using the Reynolds, Swirl and Froude numbers. The test conditions were limited to inlet Reynolds numbers from 750 to 1750. The results show that the addition of the spill passage strongly affects the internal flow even when the spill-line is closed. The air core in the Simplex atomizer is fully developed and stable for all flow regimes. The SR atomizer behaved differently; with the closed spill-line (spill-to-feed ratio, SFR = 0), the air core does not form at all; therefore, the spray is unstable. The reason is that the liquid, contained in the spill-line, is drained back into the swirl chamber due to a recirculation zone found inside the spill-line. Increasing the SFR stabilizes the internal flow, and the spray becomes stable if SFR > 0.15. The air core begins to f
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International journal of heat and mass transfer
ISSN
0017-9310
e-ISSN
1879-2189
Svazek periodika
123
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
805-814
Kód UT WoS článku
000434887000067
EID výsledku v databázi Scopus
2-s2.0-85043579555