Integrated Method utilizing Graph Theory and Fuzzy Logic for Safety and Reliability Assessment of Airborne Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU129793" target="_blank" >RIV/00216305:26210/18:PU129793 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.13164/conf.read.2018.4" target="_blank" >http://dx.doi.org/10.13164/conf.read.2018.4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/conf.read.2018.4" target="_blank" >10.13164/conf.read.2018.4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrated Method utilizing Graph Theory and Fuzzy Logic for Safety and Reliability Assessment of Airborne Systems
Popis výsledku v původním jazyce
This paper presents integrated algorithm for airborne system safety and reliability assessment. In general aviation (mostly up to EASA CS-23) and non-military unmanned aerial vehicles industry, safety and reliability assessment process still relays almost exclusively on human judgment. Recommended practices define processes for system modelling and safety assessing are based on analyst understanding of a particular system. That is difficult and time-consuming process. Commercial computation aids are extremely expensive with restricted (or closed) access to the solution algorithms. Together with this problem, rapid development of modern airborne systems, their increasing complexity, elevates level of interconnection. Therefore, safety and reliability analyses have to continuously evolve and adapt to the extending complexity. Growing expansion brings in the field of unnamed aerial vehicles, systems which consist of items without relevant reliability testing. Presented algorithm utilizes graph theory and fuzzy logic in order to develop integrated computerized mean for reliability analysis of sophisticated, highly interconnected airborne systems. Through the usage of graph theory, it is possible to create model of particular systems and its sub-systems in the form of universal data structure. Algorithm is conceived as fuzzy expert system, that emulates decision making of a human expert. That brings opportunity to partially quantify system attributes and criticality. Criticality evaluation increases level of assessment correlation with real state of system and its attributes.
Název v anglickém jazyce
Integrated Method utilizing Graph Theory and Fuzzy Logic for Safety and Reliability Assessment of Airborne Systems
Popis výsledku anglicky
This paper presents integrated algorithm for airborne system safety and reliability assessment. In general aviation (mostly up to EASA CS-23) and non-military unmanned aerial vehicles industry, safety and reliability assessment process still relays almost exclusively on human judgment. Recommended practices define processes for system modelling and safety assessing are based on analyst understanding of a particular system. That is difficult and time-consuming process. Commercial computation aids are extremely expensive with restricted (or closed) access to the solution algorithms. Together with this problem, rapid development of modern airborne systems, their increasing complexity, elevates level of interconnection. Therefore, safety and reliability analyses have to continuously evolve and adapt to the extending complexity. Growing expansion brings in the field of unnamed aerial vehicles, systems which consist of items without relevant reliability testing. Presented algorithm utilizes graph theory and fuzzy logic in order to develop integrated computerized mean for reliability analysis of sophisticated, highly interconnected airborne systems. Through the usage of graph theory, it is possible to create model of particular systems and its sub-systems in the form of universal data structure. Algorithm is conceived as fuzzy expert system, that emulates decision making of a human expert. That brings opportunity to partially quantify system attributes and criticality. Criticality evaluation increases level of assessment correlation with real state of system and its attributes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FV20043" target="_blank" >FV20043: Pokročilé technologie modulárních řídicích a diagnostických systémů leteckých motorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
13th Research and Education in Aircraft Design Conference
ISBN
978-80-214-5696-9
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
32-44
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Brno
Datum konání akce
7. 11. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—