Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combined Pinch and exergy numerical analysis for low temperature heat exchanger network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU129893" target="_blank" >RIV/00216305:26210/18:PU129893 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.energy.2018.04.023" target="_blank" >http://dx.doi.org/10.1016/j.energy.2018.04.023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2018.04.023" target="_blank" >10.1016/j.energy.2018.04.023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combined Pinch and exergy numerical analysis for low temperature heat exchanger network

  • Popis výsledku v původním jazyce

    To reduce the dependence on fossil fuel, Process Integration and energy efficiency are crucial in chemical process industry to minimise the consumption of fossil fuels and electricity demand through Heat Exchanger Network (HEN). Pinch Analysis is well established to optimal HEN design to maximize the energy recovery in a process. The stream matches for energy recovery in HEN is important to ensure the temperature potential is not wasted, which the temperature potential could be converted into mechanical work. Therefore, Exergy Analysis has been introduced to work with Pinch Analysis, which ensure the heat recovery stream matches with appropriate temperature differences to minimise the work potential (exergy) loss. This paper demonstrates how Pinch Analysis and Exergy Analysis is simultaneously applied to determine exergy targets (rejection, requirement and avoidable losses) in low temperature HEN. A novel numerical tool known as Exergy Problem Table Algorithm (Ex-PTA), is proposed in this paper as a numerical method to the conventional graphical representation in Extended Pinch Analysis and Design (ExPAnD) method. The proposed tool produces more realistic and achievable results. The net shaft work requirement of the refrigeration system is also determined together with the system COP. This paper explored the effect of setting heat exchangers' minimum approach temperature (ΔTmin) on the exergy targets for low temperature HEN design. The external utility requirement and unavoidable exergy losses increased with ΔTmin, while avoidable exergy losses and energy recovery reduced with respect to ΔTmin. The net power requirement of the system increased with the ΔTmin increment, however, the system COP reduced due to higher increment rate of compression compared to expansion work generation. The optimal ΔTmin was determined at 2 °C for heat recovery system in the case study based on super-targeting approach, which considers the total annualized cost, operating cost and capita

  • Název v anglickém jazyce

    Combined Pinch and exergy numerical analysis for low temperature heat exchanger network

  • Popis výsledku anglicky

    To reduce the dependence on fossil fuel, Process Integration and energy efficiency are crucial in chemical process industry to minimise the consumption of fossil fuels and electricity demand through Heat Exchanger Network (HEN). Pinch Analysis is well established to optimal HEN design to maximize the energy recovery in a process. The stream matches for energy recovery in HEN is important to ensure the temperature potential is not wasted, which the temperature potential could be converted into mechanical work. Therefore, Exergy Analysis has been introduced to work with Pinch Analysis, which ensure the heat recovery stream matches with appropriate temperature differences to minimise the work potential (exergy) loss. This paper demonstrates how Pinch Analysis and Exergy Analysis is simultaneously applied to determine exergy targets (rejection, requirement and avoidable losses) in low temperature HEN. A novel numerical tool known as Exergy Problem Table Algorithm (Ex-PTA), is proposed in this paper as a numerical method to the conventional graphical representation in Extended Pinch Analysis and Design (ExPAnD) method. The proposed tool produces more realistic and achievable results. The net shaft work requirement of the refrigeration system is also determined together with the system COP. This paper explored the effect of setting heat exchangers' minimum approach temperature (ΔTmin) on the exergy targets for low temperature HEN design. The external utility requirement and unavoidable exergy losses increased with ΔTmin, while avoidable exergy losses and energy recovery reduced with respect to ΔTmin. The net power requirement of the system increased with the ΔTmin increment, however, the system COP reduced due to higher increment rate of compression compared to expansion work generation. The optimal ΔTmin was determined at 2 °C for heat recovery system in the case study based on super-targeting approach, which considers the total annualized cost, operating cost and capita

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    153

  • Číslo periodika v rámci svazku

    153

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    100-112

  • Kód UT WoS článku

    000436651100011

  • EID výsledku v databázi Scopus

    2-s2.0-85047636108