Bendo-tensegrity model simulates compression test of animal cell
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU130037" target="_blank" >RIV/00216305:26210/18:PU130037 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.engmech.cz/improc/2018/45.pdf" target="_blank" >http://www.engmech.cz/improc/2018/45.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21495/91-8-45" target="_blank" >10.21495/91-8-45</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bendo-tensegrity model simulates compression test of animal cell
Popis výsledku v původním jazyce
A hybrid model of suspended animal cell proposed earlier, with a bendo-tensegrity structure mimicking cytoskeleton, is applied to simulate the global response of the cell under compression and to describe mechanical behaviour of its components. The Finite Element model incorporates Microtubules, Actin Filaments, Intermediate Filaments, nucleus, cytoplasm, and Cell Membrane, all of them with realistic geometrical and material parameters. The unique features of this structural model keep fundamental principles governing cell behaviour, such as interaction between the cytoskeletal components redistributing the prestress of actin filaments throughout all the structure. The force-deformation curve from the simulated compression test with microplates is validated by comparison with the experimental response from literature. The model enables us to investigate the mechanical role of individual celular and cytoskeletal components in intracellular force propagation by means of changing their numbers or parameters. As quantitative characterization of nucleus deformation may be hypothetically decisive for mechanotransduction, the model aims at better understanding of how cellular processes are mechanically controlled.
Název v anglickém jazyce
Bendo-tensegrity model simulates compression test of animal cell
Popis výsledku anglicky
A hybrid model of suspended animal cell proposed earlier, with a bendo-tensegrity structure mimicking cytoskeleton, is applied to simulate the global response of the cell under compression and to describe mechanical behaviour of its components. The Finite Element model incorporates Microtubules, Actin Filaments, Intermediate Filaments, nucleus, cytoplasm, and Cell Membrane, all of them with realistic geometrical and material parameters. The unique features of this structural model keep fundamental principles governing cell behaviour, such as interaction between the cytoskeletal components redistributing the prestress of actin filaments throughout all the structure. The force-deformation curve from the simulated compression test with microplates is validated by comparison with the experimental response from literature. The model enables us to investigate the mechanical role of individual celular and cytoskeletal components in intracellular force propagation by means of changing their numbers or parameters. As quantitative characterization of nucleus deformation may be hypothetically decisive for mechanotransduction, the model aims at better understanding of how cellular processes are mechanically controlled.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Mechanics 2018
ISBN
978-80-86246-88-8
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
45-48
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Svratka
Datum konání akce
14. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000465489800011