Front tracking in modelling of latent heat thermal energy storage: Assessment of accuracy and efficiency, benchmarking and GPU-based acceleration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU130178" target="_blank" >RIV/00216305:26210/18:PU130178 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.energy.2018.05.017" target="_blank" >http://dx.doi.org/10.1016/j.energy.2018.05.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2018.05.017" target="_blank" >10.1016/j.energy.2018.05.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Front tracking in modelling of latent heat thermal energy storage: Assessment of accuracy and efficiency, benchmarking and GPU-based acceleration
Popis výsledku v původním jazyce
Computer simulations of phase change processes are of high importance in research and industry. The phase change of a material from solid to liquid and vice versa is commonplace in many technical applications from metal production to latent heat thermal energy storage. As for computer modelling, most investigators and engineers use well-known interface capturing methods because of their simplicity and straightforward implementation. However, these methods often suffer from lower computational accuracy. The paper investigates the use of the front tracking method which utilizes explicit tracking of the interface between the phases. The assessment of the computational accuracy shows that the front tracking method is about two orders of magnitude more accurate than interface capturing methods. The acceleration by means of the graphics processing units (GPUs) was utilized to enhance the computational efficiency of the front tracking method. The results demonstrate that the front tracking method and its GPU-based acceleration represent a powerful tool for fast and accurate modelling of phase change processes.
Název v anglickém jazyce
Front tracking in modelling of latent heat thermal energy storage: Assessment of accuracy and efficiency, benchmarking and GPU-based acceleration
Popis výsledku anglicky
Computer simulations of phase change processes are of high importance in research and industry. The phase change of a material from solid to liquid and vice versa is commonplace in many technical applications from metal production to latent heat thermal energy storage. As for computer modelling, most investigators and engineers use well-known interface capturing methods because of their simplicity and straightforward implementation. However, these methods often suffer from lower computational accuracy. The paper investigates the use of the front tracking method which utilizes explicit tracking of the interface between the phases. The assessment of the computational accuracy shows that the front tracking method is about two orders of magnitude more accurate than interface capturing methods. The acceleration by means of the graphics processing units (GPUs) was utilized to enhance the computational efficiency of the front tracking method. The results demonstrate that the front tracking method and its GPU-based acceleration represent a powerful tool for fast and accurate modelling of phase change processes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
155
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
297-311
Kód UT WoS článku
000445303100027
EID výsledku v databázi Scopus
2-s2.0-85046995082