Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Contribution of an Electro-Vortex Flow to Primary, Secondary, and Tertiary Electric Current Distribution in an Electrolyte

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU136972" target="_blank" >RIV/00216305:26210/18:PU136972 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=14&SID=D1mYtjVweLYpwOM65oz&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=14&SID=D1mYtjVweLYpwOM65oz&page=1&doc=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1149/2.1201811jes" target="_blank" >10.1149/2.1201811jes</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Contribution of an Electro-Vortex Flow to Primary, Secondary, and Tertiary Electric Current Distribution in an Electrolyte

  • Popis výsledku v původním jazyce

    Three different approaches, known as primary, secondary, and tertiary current distributions, are employed to calculate the electric current distribution throughout an electrochemical system. Ohm's law is used for the primary and secondary, whereas Nernst-Planck equations for the tertiary. The electromagnetic field is calculated in the entire system (CaF2-based electrolyte, air, electrode, and graphite crucible), while the electro-vortex flow and concentration fields of ions are solved only in the electrolyte. The model accounts for the faradaic reaction of the formation of Fe2+ at the anode and the discharge of Fe2+ and Ca2+ at the cathodic crucible. The electric double layer (EDL) is modeled considering the generalized Frumkin-Butler-Volmer (gFBV) formula. The dissimilarity in the calculated concentration of Fe2+ between secondary and tertiary current distributions decreases with the increase of the applied voltage. A strong stirring of the electrolyte by (exclusive) Lorentz force cannot guarantee uniform concentration for all ions. As the applied voltage increases the migration may locally surpass the advection flux, leading to accumulation of ions near the anode/cathode. All current distributions (primary, secondary and tertiary) predict equal bulk electrical resistance in the absence of diffusive electric current, equal diffusion coefficients for all ions, despite the non-uniform distribution of electrical conductivity in the tertiary current distribution. The modeling results enabled us to elucidate the origin of an experimentally observed phenomenon, i.e., the formation of a thick layer of FeO under the tip of electrode. (C) 2018 The Electrochemical Society.

  • Název v anglickém jazyce

    Contribution of an Electro-Vortex Flow to Primary, Secondary, and Tertiary Electric Current Distribution in an Electrolyte

  • Popis výsledku anglicky

    Three different approaches, known as primary, secondary, and tertiary current distributions, are employed to calculate the electric current distribution throughout an electrochemical system. Ohm's law is used for the primary and secondary, whereas Nernst-Planck equations for the tertiary. The electromagnetic field is calculated in the entire system (CaF2-based electrolyte, air, electrode, and graphite crucible), while the electro-vortex flow and concentration fields of ions are solved only in the electrolyte. The model accounts for the faradaic reaction of the formation of Fe2+ at the anode and the discharge of Fe2+ and Ca2+ at the cathodic crucible. The electric double layer (EDL) is modeled considering the generalized Frumkin-Butler-Volmer (gFBV) formula. The dissimilarity in the calculated concentration of Fe2+ between secondary and tertiary current distributions decreases with the increase of the applied voltage. A strong stirring of the electrolyte by (exclusive) Lorentz force cannot guarantee uniform concentration for all ions. As the applied voltage increases the migration may locally surpass the advection flux, leading to accumulation of ions near the anode/cathode. All current distributions (primary, secondary and tertiary) predict equal bulk electrical resistance in the absence of diffusive electric current, equal diffusion coefficients for all ions, despite the non-uniform distribution of electrical conductivity in the tertiary current distribution. The modeling results enabled us to elucidate the origin of an experimentally observed phenomenon, i.e., the formation of a thick layer of FeO under the tip of electrode. (C) 2018 The Electrochemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF THE ELECTROCHEMICAL SOCIETY

  • ISSN

    0013-4651

  • e-ISSN

    1945-7111

  • Svazek periodika

    165

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    „E604“-„E615“

  • Kód UT WoS článku

    000444098600002

  • EID výsledku v databázi Scopus

    2-s2.0-85059958689