Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: A comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU132999" target="_blank" >RIV/00216305:26210/19:PU132999 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0376738819317752" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0376738819317752</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.memsci.2019.117393" target="_blank" >10.1016/j.memsci.2019.117393</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: A comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data
Popis výsledku v původním jazyce
Hollow-fiber membranes (HFMs) have widely been applied to many liquid treatment applications such as wastewater treatment, membrane distillation and membrane contactor/bioreactor applications. However, they have rarely been used for aerosol filtration thus far. In this work, we tested air filtration performance of air filter modules composed of polypropylene HFMs. The experimental results of most penetrating particle size (MPPS) and permeability were then compared with theoretically predicted values. Filtration efficiency and MPPS were measured using a monodisperse (20, 35, 50, 70, 100, 140, 280 and 400 nm) and a polydisperse aerosol (15–594 nm). Dimensionless permeability was predicted using models assuming isotropic 3D pore structure and compared with permeability measured using capillary flow porometry. Finally, an experiment to observe pressure drop with long-term particle loading was carried out. In the experiments with the monodisperse aerosol, no penetration was observed regardless of particle size. Therefore, face velocity was increased and high concentrations of the polydisperse aerosol were used to increase the penetration. The MPPS was then found to be 333 and 250 nm at a flowrate of 10 and 40 L/min, respectively. The MPPS model for diffusion and interception dominant regime proposed by Lee and Liu (1986) was closest to these results. Dimensionless permeability varied depending on the conditions for which the individual models were derived. For example, the RUC (representative unit cell) model underestimates the results while the results predicted using the empirical formula of Davies (1953) differ significantly from the measured values. The loading experiments have shown significantly prolonged fouling by high concentrations of submicron particles compared to conventional fibrous filters.
Název v anglickém jazyce
Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: A comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data
Popis výsledku anglicky
Hollow-fiber membranes (HFMs) have widely been applied to many liquid treatment applications such as wastewater treatment, membrane distillation and membrane contactor/bioreactor applications. However, they have rarely been used for aerosol filtration thus far. In this work, we tested air filtration performance of air filter modules composed of polypropylene HFMs. The experimental results of most penetrating particle size (MPPS) and permeability were then compared with theoretically predicted values. Filtration efficiency and MPPS were measured using a monodisperse (20, 35, 50, 70, 100, 140, 280 and 400 nm) and a polydisperse aerosol (15–594 nm). Dimensionless permeability was predicted using models assuming isotropic 3D pore structure and compared with permeability measured using capillary flow porometry. Finally, an experiment to observe pressure drop with long-term particle loading was carried out. In the experiments with the monodisperse aerosol, no penetration was observed regardless of particle size. Therefore, face velocity was increased and high concentrations of the polydisperse aerosol were used to increase the penetration. The MPPS was then found to be 333 and 250 nm at a flowrate of 10 and 40 L/min, respectively. The MPPS model for diffusion and interception dominant regime proposed by Lee and Liu (1986) was closest to these results. Dimensionless permeability varied depending on the conditions for which the individual models were derived. For example, the RUC (representative unit cell) model underestimates the results while the results predicted using the empirical formula of Davies (1953) differ significantly from the measured values. The loading experiments have shown significantly prolonged fouling by high concentrations of submicron particles compared to conventional fibrous filters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Výpočtové simulace pro efektivní nízkoemisní energetiku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF MEMBRANE SCIENCE
ISSN
0376-7388
e-ISSN
1873-3123
Svazek periodika
592
Číslo periodika v rámci svazku
117393
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000484657900014
EID výsledku v databázi Scopus
2-s2.0-85070934038