Digestate evaporation treatment in biogas plants: A techno-economic assessment by Monte Carlo, neural networks and decision trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU133458" target="_blank" >RIV/00216305:26210/19:PU133458 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0959652619327404" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0959652619327404</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2019.117870" target="_blank" >10.1016/j.jclepro.2019.117870</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Digestate evaporation treatment in biogas plants: A techno-economic assessment by Monte Carlo, neural networks and decision trees
Popis výsledku v původním jazyce
Biogas production is one of the most promising pathways toward fully utilizing green energy within a circular economy. The anaerobic digestion process is the industry standard technology for biogas production due to its lowered energy consumption and its reliance on microbiology. Even in such an environmental-friendly process, liquid digestate is still produced from the remains of digested bio-feedstock and will require treatment. With unsuitable treatment procedure for liquid digestate, the mass of bio-feedstock can potentially escape the circular supply chain within the economy. This paper recommends the implementation of evaporator systems to provide a sustainable liquid digestate treating mechanism within the economy. Studied evaporator systems are represented by vacuum evaporation in combination with ammonia scrubber, stripping and reverse osmosis. Nevertheless, complex multi-dimensional decisions should be made by stakeholders before implementing such systems. Our work utilizes a novel techno-economics model to study the techno-economics robustness in implementing recent state-of-art vacuum evaporation systems with exploitation of waste heat from combined heat and power (CHP) units in biogas plants (BGP). To take into the account the stochasticity of the real world and robustness of the analysis, we used the Monte-Carlo simulation technique to generate more than 20,000 of different possibilities for the implementation of the evaporation system. Favourable decision pathways are then selected using a novel methodology which utilizes the artificial neural network and a hyper-optimized decision tree classifier. Two pathways that give the highest probability of providing a fast payback period are identified. Descriptive statistics are also used to analyse the distributions of decision parameters that lead to success in implementing the evaporator system. The results highlighted that integration of evaporation system are favourable when transport costs and incentive
Název v anglickém jazyce
Digestate evaporation treatment in biogas plants: A techno-economic assessment by Monte Carlo, neural networks and decision trees
Popis výsledku anglicky
Biogas production is one of the most promising pathways toward fully utilizing green energy within a circular economy. The anaerobic digestion process is the industry standard technology for biogas production due to its lowered energy consumption and its reliance on microbiology. Even in such an environmental-friendly process, liquid digestate is still produced from the remains of digested bio-feedstock and will require treatment. With unsuitable treatment procedure for liquid digestate, the mass of bio-feedstock can potentially escape the circular supply chain within the economy. This paper recommends the implementation of evaporator systems to provide a sustainable liquid digestate treating mechanism within the economy. Studied evaporator systems are represented by vacuum evaporation in combination with ammonia scrubber, stripping and reverse osmosis. Nevertheless, complex multi-dimensional decisions should be made by stakeholders before implementing such systems. Our work utilizes a novel techno-economics model to study the techno-economics robustness in implementing recent state-of-art vacuum evaporation systems with exploitation of waste heat from combined heat and power (CHP) units in biogas plants (BGP). To take into the account the stochasticity of the real world and robustness of the analysis, we used the Monte-Carlo simulation technique to generate more than 20,000 of different possibilities for the implementation of the evaporation system. Favourable decision pathways are then selected using a novel methodology which utilizes the artificial neural network and a hyper-optimized decision tree classifier. Two pathways that give the highest probability of providing a fast payback period are identified. Descriptive statistics are also used to analyse the distributions of decision parameters that lead to success in implementing the evaporator system. The results highlighted that integration of evaporation system are favourable when transport costs and incentive
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
neuveden
Číslo periodika v rámci svazku
238
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
000487231200035
EID výsledku v databázi Scopus
2-s2.0-85070258305