Numerical Investigation of Flow in a Runner of Low-Head Bulb Turbine and Correlation With Particle Image Velocimetry and Laser Doppler Velocimetry Measurements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134200" target="_blank" >RIV/00216305:26210/19:PU134200 - isvavai.cz</a>
Výsledek na webu
<a href="https://asmedigitalcollection.asme.org/fluidsengineering/article/141/9/091403/726815/Numerical-Investigation-of-Flow-in-a-Runner-of-Low?searchresult=1" target="_blank" >https://asmedigitalcollection.asme.org/fluidsengineering/article/141/9/091403/726815/Numerical-Investigation-of-Flow-in-a-Runner-of-Low?searchresult=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4042963" target="_blank" >10.1115/1.4042963</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Investigation of Flow in a Runner of Low-Head Bulb Turbine and Correlation With Particle Image Velocimetry and Laser Doppler Velocimetry Measurements
Popis výsledku v původním jazyce
It is a well-known fact and a much studied problematic that the performance of low-head hydraulic turbines is highly dependent on the runner–draft tube coupling. Around the optimal operating conditions, the efficiency of the turbine follows closely the performance of the draft tube that in turn depends on the velocity field exiting the runner. Hence, in order to predict correctly the performance of the draft tube using numerical simulations, the flow inside the runner must be simulated accurately. Using results from unique and detailed particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements inside the runner channel of a bulb turbine, this paper presents an extensive study of the predictive capability of a widely used simulation methodology based on unsteady Reynolds-averaged Navier–Stokes equations with a k-epsilon closure model. The main objective was to identify the main parameters influencing the numerical predictions of the velocity field at the draft tube entrance in order to increase the accuracy of the simulated performance of the turbine. This paper relies on a comparison of simulations results with already published LDV measurements in the draft tube cone, interblade LDV, and stereoscopic PIV measurements within the runner. This paper presents a detailed discussion of numerical–experimental data correlation inside the runner channel and at the drat tube entrance. It shows that, contrary to widely circulated ideas, the near-wall predictions at the draft tube entrance is surprisingly good while the simulation accuracy inside the runner channels deteriorates from the leading to the trailing edges.
Název v anglickém jazyce
Numerical Investigation of Flow in a Runner of Low-Head Bulb Turbine and Correlation With Particle Image Velocimetry and Laser Doppler Velocimetry Measurements
Popis výsledku anglicky
It is a well-known fact and a much studied problematic that the performance of low-head hydraulic turbines is highly dependent on the runner–draft tube coupling. Around the optimal operating conditions, the efficiency of the turbine follows closely the performance of the draft tube that in turn depends on the velocity field exiting the runner. Hence, in order to predict correctly the performance of the draft tube using numerical simulations, the flow inside the runner must be simulated accurately. Using results from unique and detailed particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements inside the runner channel of a bulb turbine, this paper presents an extensive study of the predictive capability of a widely used simulation methodology based on unsteady Reynolds-averaged Navier–Stokes equations with a k-epsilon closure model. The main objective was to identify the main parameters influencing the numerical predictions of the velocity field at the draft tube entrance in order to increase the accuracy of the simulated performance of the turbine. This paper relies on a comparison of simulations results with already published LDV measurements in the draft tube cone, interblade LDV, and stereoscopic PIV measurements within the runner. This paper presents a detailed discussion of numerical–experimental data correlation inside the runner channel and at the drat tube entrance. It shows that, contrary to widely circulated ideas, the near-wall predictions at the draft tube entrance is surprisingly good while the simulation accuracy inside the runner channels deteriorates from the leading to the trailing edges.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
ISSN
0098-2202
e-ISSN
1528-901X
Svazek periodika
141
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000476820400014
EID výsledku v databázi Scopus
2-s2.0-85064191977