Forecasting Air Pollution by Adaptive Neuro Fuzzy Inference System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135405" target="_blank" >RIV/00216305:26210/19:PU135405 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.23919/SpliTech.2019.8783075" target="_blank" >http://dx.doi.org/10.23919/SpliTech.2019.8783075</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/SpliTech.2019.8783075" target="_blank" >10.23919/SpliTech.2019.8783075</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting Air Pollution by Adaptive Neuro Fuzzy Inference System
Popis výsledku v původním jazyce
Air pollution causes a variety of adverse effects on humans such as illness or even death and damages the living organisms and the natural environment. This environmental issue needs to be controlled using various application and technology to estimate the composition of multiple pollutants in the atmosphere for a specified time and location. The present study aims to develop a system for air pollution forecasting using an adaptive neuro-fuzzy inference system. This method is a type of artificial neural network that integrates both neural networks and fuzzy logic principles. The adaptive neuro-fuzzy inference system calculations include four phases including implement fuzzy system, enter parameters, start the learning process, and verify the processed data. As a sample, the concentrations of atmospheric pollutant data recorded by sensors. The adaptive neuro-fuzzy inference system method predicts four air pollution indicator levels, including carbon monoxide, sulfur dioxide, nitrogen oxides, and trioxygen. The analysis results reveal that the mean absolute error of the adaptive neuro-fuzzy inference system method results is less than 15 %.
Název v anglickém jazyce
Forecasting Air Pollution by Adaptive Neuro Fuzzy Inference System
Popis výsledku anglicky
Air pollution causes a variety of adverse effects on humans such as illness or even death and damages the living organisms and the natural environment. This environmental issue needs to be controlled using various application and technology to estimate the composition of multiple pollutants in the atmosphere for a specified time and location. The present study aims to develop a system for air pollution forecasting using an adaptive neuro-fuzzy inference system. This method is a type of artificial neural network that integrates both neural networks and fuzzy logic principles. The adaptive neuro-fuzzy inference system calculations include four phases including implement fuzzy system, enter parameters, start the learning process, and verify the processed data. As a sample, the concentrations of atmospheric pollutant data recorded by sensors. The adaptive neuro-fuzzy inference system method predicts four air pollution indicator levels, including carbon monoxide, sulfur dioxide, nitrogen oxides, and trioxygen. The analysis results reveal that the mean absolute error of the adaptive neuro-fuzzy inference system method results is less than 15 %.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 4TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES (SPLITECH)
ISBN
978-953-290-091-0
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
456-458
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Neuveden
Místo konání akce
Univ Split, Fac Elect Engn, Mech Engn & Naval Ar
Datum konání akce
18. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000502810800083