Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU134702" target="_blank" >RIV/00216305:26210/20:PU134702 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1364032119308846" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032119308846</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2019.109679" target="_blank" >10.1016/j.rser.2019.109679</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems

  • Popis výsledku v původním jazyce

    Biomass polygeneration system is one of the most attractive biomass technologies due to its technicality, feasibility and high associated investment returns. The synthesis, design and economic aspects of constructing a processing system using this technology are well-developed and have recently reached the stage of industrial implementation. Nonetheless, the early stage of technology development focuses on process and product safety and tends to ignore other risk aspects that are closely associated with the biomass value chain. Due to the complex nature of the biomass value chain, conventional risk mitigation strategies are ineffective in mitigating risks at the management level. More recent approaches, particularly stochastic programming methods, have yielded robust results in addressing technological risks and design uncertainties. However, such approaches are still unable to effectively consider non-quantitative risks such as business risks and regulatory risks. Hence, this study proposes a combined method of an analytical model and stochastic programming approach to prioritize risks and risk mitigation strategies for decision-making purposes. This work presents a novel multiple-criteria decision-making expert system based on fuzzy set theory, which is the Decision and Evaluation-based Fuzzy Analytic Network Process (DEFANP) method. The novel method functions to prioritize risk mitigation strategies within a network relationship of project goals, key components of the biomass industry and industrial stakeholders. As the stochastic risk mitigation counterpart, the fluctuations and uncertainties in operations, transportation, market supply-demand and price are modeled using the Monte Carlo simulation method. From this, risks of implementing biomass polygeneration systems can be mitigated by selecting a strategy that yields the highest analytical indicator while reconciling with the corresponding probabilities of achieving management goals. A palm biomass polygenera

  • Název v anglickém jazyce

    A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems

  • Popis výsledku anglicky

    Biomass polygeneration system is one of the most attractive biomass technologies due to its technicality, feasibility and high associated investment returns. The synthesis, design and economic aspects of constructing a processing system using this technology are well-developed and have recently reached the stage of industrial implementation. Nonetheless, the early stage of technology development focuses on process and product safety and tends to ignore other risk aspects that are closely associated with the biomass value chain. Due to the complex nature of the biomass value chain, conventional risk mitigation strategies are ineffective in mitigating risks at the management level. More recent approaches, particularly stochastic programming methods, have yielded robust results in addressing technological risks and design uncertainties. However, such approaches are still unable to effectively consider non-quantitative risks such as business risks and regulatory risks. Hence, this study proposes a combined method of an analytical model and stochastic programming approach to prioritize risks and risk mitigation strategies for decision-making purposes. This work presents a novel multiple-criteria decision-making expert system based on fuzzy set theory, which is the Decision and Evaluation-based Fuzzy Analytic Network Process (DEFANP) method. The novel method functions to prioritize risk mitigation strategies within a network relationship of project goals, key components of the biomass industry and industrial stakeholders. As the stochastic risk mitigation counterpart, the fluctuations and uncertainties in operations, transportation, market supply-demand and price are modeled using the Monte Carlo simulation method. From this, risks of implementing biomass polygeneration systems can be mitigated by selecting a strategy that yields the highest analytical indicator while reconciling with the corresponding probabilities of achieving management goals. A palm biomass polygenera

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategické partnerství pro environmentální technologie a produkci energie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Svazek periodika

    121

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    109679-109784

  • Kód UT WoS článku

    000512410200015

  • EID výsledku v databázi Scopus

    2-s2.0-85077315115