Data-driven analytical framework for waste dumping behaviour analysis to facilitate policy regulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136012" target="_blank" >RIV/00216305:26210/20:PU136012 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0956053X19307950?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0956053X19307950?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wasman.2019.12.041" target="_blank" >10.1016/j.wasman.2019.12.041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven analytical framework for waste dumping behaviour analysis to facilitate policy regulations
Popis výsledku v původním jazyce
Waste sorting at the source is a vital strategy of waste management and to improve urban sustainability. If the strategy is implemented by relying solely on publicity and civic awareness, the impact is less significant. Proactive measures, such as policy regulations, supervisory guidance, and stimulating incentives, play essential roles for better management. The unknown waste-dumping behaviour of residents is a great challenge for decision-makers to allocate resources for waste-collection operations and to refine regulations. Traditional behaviour analysis methods such as questionnaire surveys and simulation methods have limitations considering the population size and the complexity of individual behaviour. This study aims to design a data-driven analytical framework to analyse household waste-dumping behaviour and facilitate policy regulations by using the Internet of Things (IoT) and data mining technologies. The analytical framework is further developed into a four-step management cycle. A case study in Shanghai is employed to demonstrate the effectiveness of the analytical framework and management cycle. The results of behaviour analyses reveal that (1) waste-dumping frequency is high in the evening but negligible in the early afternoon; (2) compared to working days, peak-value time at weekends occurs later in the morning and earlier in the evening; (3) residents require longer waste-dumping time windows than those empirically recommended by administrators. Managerial insights and decision support based on these research results have been presented for decision-makers to guide operations management and facilitate policy regulations. © 2019
Název v anglickém jazyce
Data-driven analytical framework for waste dumping behaviour analysis to facilitate policy regulations
Popis výsledku anglicky
Waste sorting at the source is a vital strategy of waste management and to improve urban sustainability. If the strategy is implemented by relying solely on publicity and civic awareness, the impact is less significant. Proactive measures, such as policy regulations, supervisory guidance, and stimulating incentives, play essential roles for better management. The unknown waste-dumping behaviour of residents is a great challenge for decision-makers to allocate resources for waste-collection operations and to refine regulations. Traditional behaviour analysis methods such as questionnaire surveys and simulation methods have limitations considering the population size and the complexity of individual behaviour. This study aims to design a data-driven analytical framework to analyse household waste-dumping behaviour and facilitate policy regulations by using the Internet of Things (IoT) and data mining technologies. The analytical framework is further developed into a four-step management cycle. A case study in Shanghai is employed to demonstrate the effectiveness of the analytical framework and management cycle. The results of behaviour analyses reveal that (1) waste-dumping frequency is high in the evening but negligible in the early afternoon; (2) compared to working days, peak-value time at weekends occurs later in the morning and earlier in the evening; (3) residents require longer waste-dumping time windows than those empirically recommended by administrators. Managerial insights and decision support based on these research results have been presented for decision-makers to guide operations management and facilitate policy regulations. © 2019
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Waste Management
ISSN
0956-053X
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
103
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
285-295
Kód UT WoS článku
000547367900030
EID výsledku v databázi Scopus
2-s2.0-85077333545