Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136928" target="_blank" >RIV/00216305:26210/20:PU136928 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/full/10.1177/1045389X20942832" target="_blank" >https://journals.sagepub.com/doi/full/10.1177/1045389X20942832</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/1045389X20942832" target="_blank" >10.1177/1045389X20942832</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses

  • Popis výsledku v původním jazyce

    The article focuses on a modeling and subsequent optimization of a novel layered architecture of the vibration piezoceramic energy harvester composed of ZrO2/Al2O3/BaTiO(3)layers and containing thermal residual stresses. The developed analytical/numerical model allows to determine the complete electromechanical response and the apparent fracture toughness of the multilayer vibration energy harvester, upon consideration of thermal residual stresses and time-harmonic kinematic excitation. The derived model uses the Euler-Bernoulli beam theory, Hamilton's variational principle, and a classical laminate theory to determine the first natural frequency, steady-state electromechanical response of the beam upon harmonic vibrations, and also the mechanical stresses within particular layers of the harvester. The laminate apparent fracture toughness is computed by means of the weight function approach. A crucial point is the further optimization of the layered architecture from both the electromechanical response and the fracture resistance point of view. Maximal allowable excitation acceleration of the harvester upon which the piezoelectric layer will not fail is determined. It makes possible to better use the harvester's capabilities in a given application and simultaneously guarantee its safe operation. Outputs of the derived analytical model were validated with finite element method simulations and available experimental results, and a good agreement between all approaches was obtained.

  • Název v anglickém jazyce

    Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses

  • Popis výsledku anglicky

    The article focuses on a modeling and subsequent optimization of a novel layered architecture of the vibration piezoceramic energy harvester composed of ZrO2/Al2O3/BaTiO(3)layers and containing thermal residual stresses. The developed analytical/numerical model allows to determine the complete electromechanical response and the apparent fracture toughness of the multilayer vibration energy harvester, upon consideration of thermal residual stresses and time-harmonic kinematic excitation. The derived model uses the Euler-Bernoulli beam theory, Hamilton's variational principle, and a classical laminate theory to determine the first natural frequency, steady-state electromechanical response of the beam upon harmonic vibrations, and also the mechanical stresses within particular layers of the harvester. The laminate apparent fracture toughness is computed by means of the weight function approach. A crucial point is the further optimization of the layered architecture from both the electromechanical response and the fracture resistance point of view. Maximal allowable excitation acceleration of the harvester upon which the piezoelectric layer will not fail is determined. It makes possible to better use the harvester's capabilities in a given application and simultaneously guarantee its safe operation. Outputs of the derived analytical model were validated with finite element method simulations and available experimental results, and a good agreement between all approaches was obtained.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES

  • ISSN

    1045-389X

  • e-ISSN

    1530-8138

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    27

  • Strana od-do

    2261-2287

  • Kód UT WoS článku

    000559358100001

  • EID výsledku v databázi Scopus

    2-s2.0-85088839265