A COMPUTATIONAL PROTOCOL FOR SIMULATION OF LIQUID JETS IN CROSSFLOWS WITH ATOMIZATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137398" target="_blank" >RIV/00216305:26210/20:PU137398 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,5912bb963e465660,57611c95741c0390.html" target="_blank" >http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,5912bb963e465660,57611c95741c0390.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1615/AtomizSpr.2020034815" target="_blank" >10.1615/AtomizSpr.2020034815</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A COMPUTATIONAL PROTOCOL FOR SIMULATION OF LIQUID JETS IN CROSSFLOWS WITH ATOMIZATION
Popis výsledku v původním jazyce
A new computational procedure for simulating liquid jets in crossflows with atomization is described and demonstrated. In our previous work, the integral form of the conservation equations has been used to derive explicit quadratic formulas for drop size during spray atomization in various geometries. This formula relates the drop size with the local kinetic energy state, i.e., the velocities, so that local velocity data from liquid-phase simulation prior to atomization can be used to determine the initial drop size. This initial drop size and appropriately sampled local gas velocities are used as the initial conditions in the dispersed-phase simulation. This procedure has been performed with good validation and comparison with experimental data at realistic Reynolds and Weber number conditions. This approach is based on the conservation principles and is generalizable so that it can easily be implemented in any spray geometries for accurate and efficient computations of spray flows.
Název v anglickém jazyce
A COMPUTATIONAL PROTOCOL FOR SIMULATION OF LIQUID JETS IN CROSSFLOWS WITH ATOMIZATION
Popis výsledku anglicky
A new computational procedure for simulating liquid jets in crossflows with atomization is described and demonstrated. In our previous work, the integral form of the conservation equations has been used to derive explicit quadratic formulas for drop size during spray atomization in various geometries. This formula relates the drop size with the local kinetic energy state, i.e., the velocities, so that local velocity data from liquid-phase simulation prior to atomization can be used to determine the initial drop size. This initial drop size and appropriately sampled local gas velocities are used as the initial conditions in the dispersed-phase simulation. This procedure has been performed with good validation and comparison with experimental data at realistic Reynolds and Weber number conditions. This approach is based on the conservation principles and is generalizable so that it can easily be implemented in any spray geometries for accurate and efficient computations of spray flows.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21101 - Food and beverages
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19053" target="_blank" >LTAUSA19053: Principy tvorby a využití vodovzdušné směsi v průmyslových aplikacích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ATOMIZATION AND SPRAYS
ISSN
1044-5110
e-ISSN
1936-2684
Svazek periodika
30
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
319-330
Kód UT WoS článku
000581009200002
EID výsledku v databázi Scopus
2-s2.0-85092643171