Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Total site heat and power integration for locally integrated energy sectors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137678" target="_blank" >RIV/00216305:26210/20:PU137678 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544220310665?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544220310665?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2020.117959" target="_blank" >10.1016/j.energy.2020.117959</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Total site heat and power integration for locally integrated energy sectors

  • Popis výsledku v původním jazyce

    Maximising energy efficiency is essential for an energy system based on renewable or non-renewable energy sources to minimise fuel demand. Process Integration methodologies for specific energy types (thermal and power) have been well developed in recent years for enhancing energy efficiency. However, the interaction between different types of energy (thermal and power) within a single system could be more deeply studied to achieve the ultimate goal of maximising energy and exergy efficiency. This research work extends the previously developed Locally Integrated Energy Sector (LIES) concept, which integrates the energy systems (thermal and power) of industrial, commercial and residential buildings with thermal energy storage and batteries. The LIES concept aims to reduce overall energy consumption and to enhance overall energy efficiency and power cogeneration. In the present paper, a comprehensive targeting framework is introduced for designing and optimising a combined energy system using a Process Integration (i.e. Pinch Analysis) approach. Steam turbines connect the thermal and power systems, which, in this case, the turbines generate power from waste heat. The on-grid and off-grid power supply options are also considered in this framework. The case study concludes that the lowest energy cost system requires a heat storage systems with let-down in between, power cogeneration from waste heat (i.e. surplus heat below the TS Pinch), Power Pinch Analysis, battery storage and on-grid power supply. The results for the case study show that the overall energy cost of the optimised system is 52% lower than the base case without integration. In this energy system, however, it has been found that the increment of energy efficiency for the steam (thermal energy) system might lead to lower overall energy efficiency and higher total operating cost. This situation happens when there is a lower amount of waste heat available.

  • Název v anglickém jazyce

    Total site heat and power integration for locally integrated energy sectors

  • Popis výsledku anglicky

    Maximising energy efficiency is essential for an energy system based on renewable or non-renewable energy sources to minimise fuel demand. Process Integration methodologies for specific energy types (thermal and power) have been well developed in recent years for enhancing energy efficiency. However, the interaction between different types of energy (thermal and power) within a single system could be more deeply studied to achieve the ultimate goal of maximising energy and exergy efficiency. This research work extends the previously developed Locally Integrated Energy Sector (LIES) concept, which integrates the energy systems (thermal and power) of industrial, commercial and residential buildings with thermal energy storage and batteries. The LIES concept aims to reduce overall energy consumption and to enhance overall energy efficiency and power cogeneration. In the present paper, a comprehensive targeting framework is introduced for designing and optimising a combined energy system using a Process Integration (i.e. Pinch Analysis) approach. Steam turbines connect the thermal and power systems, which, in this case, the turbines generate power from waste heat. The on-grid and off-grid power supply options are also considered in this framework. The case study concludes that the lowest energy cost system requires a heat storage systems with let-down in between, power cogeneration from waste heat (i.e. surplus heat below the TS Pinch), Power Pinch Analysis, battery storage and on-grid power supply. The results for the case study show that the overall energy cost of the optimised system is 52% lower than the base case without integration. In this energy system, however, it has been found that the increment of energy efficiency for the steam (thermal energy) system might lead to lower overall energy efficiency and higher total operating cost. This situation happens when there is a lower amount of waste heat available.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    204

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    117959-117959

  • Kód UT WoS článku

    000542257800049

  • EID výsledku v databázi Scopus

    2-s2.0-85085958765