Combined cooling, heating and power integration for locally integrated energy sector
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU138501" target="_blank" >RIV/00216305:26210/20:PU138501 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aidic.it/cet/20/81/159.pdf" target="_blank" >https://www.aidic.it/cet/20/81/159.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2081159" target="_blank" >10.3303/CET2081159</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combined cooling, heating and power integration for locally integrated energy sector
Popis výsledku v původním jazyce
A huge amount of energy is consumed by residential, industrial, workplace and service sector. The operating units in Locally Integrated Energy Sectors (LIES) contributes negatively to global greenhouse gases emission. Energy efficiency is particularly important to overcome the growth of energy demand. Many countries in the world have implemented a number of methods to increase energy efficiencies. Combined Cooling, Heat and Power system (CCHP) is also known as the tri-generation system has been proven to be more efficient on sustainability and environmentally as compare to conventional generating system in terms of energy consumption, operational costs, heat loss and greenhouse gases emission. CCHP system tends to produce more products using waste heat. The expected outputs of tri-generation systems are power, heating utility system, cooling down utility system and waste heat. Process Integration through Pinch analysis is a tool for reducing energy consumptions and maximizing energy recovery. Total Site Heat Integration (TSHI) is an extended methodology of the individual process Pinch Analysis on heating targeting. Power Pinch Analysis (PoPA) is used to optimize the power from process, tri-generation and co-generation systems. CCHP Integration can be connected to form a comprehensive energy integration network among the energy supply and demand within a local area, as proposed by LIES. The new methodology deals with variable heating, chilling and power supply and demand, with a heat and battery storage system. The system is connected to a trigeneration energy system for optimizing the operation of the proposed system. The trigeneration system provides great flexibility for the optimization of the energy system. A case study is performed for verifying the proposed methodology, whereby energy recovery (cooling, heat and power) opportunities are found from the system studied. The case study showed 100 % reduction of steam, chilled water and electricity demand. The syst
Název v anglickém jazyce
Combined cooling, heating and power integration for locally integrated energy sector
Popis výsledku anglicky
A huge amount of energy is consumed by residential, industrial, workplace and service sector. The operating units in Locally Integrated Energy Sectors (LIES) contributes negatively to global greenhouse gases emission. Energy efficiency is particularly important to overcome the growth of energy demand. Many countries in the world have implemented a number of methods to increase energy efficiencies. Combined Cooling, Heat and Power system (CCHP) is also known as the tri-generation system has been proven to be more efficient on sustainability and environmentally as compare to conventional generating system in terms of energy consumption, operational costs, heat loss and greenhouse gases emission. CCHP system tends to produce more products using waste heat. The expected outputs of tri-generation systems are power, heating utility system, cooling down utility system and waste heat. Process Integration through Pinch analysis is a tool for reducing energy consumptions and maximizing energy recovery. Total Site Heat Integration (TSHI) is an extended methodology of the individual process Pinch Analysis on heating targeting. Power Pinch Analysis (PoPA) is used to optimize the power from process, tri-generation and co-generation systems. CCHP Integration can be connected to form a comprehensive energy integration network among the energy supply and demand within a local area, as proposed by LIES. The new methodology deals with variable heating, chilling and power supply and demand, with a heat and battery storage system. The system is connected to a trigeneration energy system for optimizing the operation of the proposed system. The trigeneration system provides great flexibility for the optimization of the energy system. A case study is performed for verifying the proposed methodology, whereby energy recovery (cooling, heat and power) opportunities are found from the system studied. The case study showed 100 % reduction of steam, chilled water and electricity demand. The syst
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
81
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
6
Strana od-do
949-954
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85092281418