Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU138530" target="_blank" >RIV/00216305:26210/20:PU138530 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360544220315528?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544220315528?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2020.118444" target="_blank" >10.1016/j.energy.2020.118444</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation
Popis výsledku v původním jazyce
This study aims to assess the torrefaction of biomass as alternative renewable energy fuel to coal during co-firing. It was evaluated that torrefaction improves biomass grindability to such an extent that it can be used in coal mills with coal in co-firing without capital intensive modification. Torrefaction of beech wood was performed on a batch scale reactor at three different temperatures (200, 250 and 300 degrees C) with 30 min of residence time. The chemical structural changes in torrefled biomass were investigated with binding energies and FTIR (Fourier transform infrared) analysis. Monocombustion and co-combustion tests were performed to examine the combustion behaviour regarding flue gas emissions (CO, NOx and SO2) at 0.5, 1.5 and 2.5 m distance from the burner opening along with fly ash analysis. The FTIR and binding energies showed that lignin hardly affected during light torrefaction while hemicellulosic material was significantly depleted. The Hardgrove grindability index (HGI) was calculated with three methods (DIN51742, IFK and ISO). The medium temperature torrefled biomass (MTTB) yields HGI value in the range of 32-37 that was comparable with HGI of El Cerrejon coal (36-41). A slight change in temperature enabled the torrefled beech wood to be co-milled with coal without capital intensive modification and improved grindability. Comparing the combustion behaviour of single fuels, low temperature torrefled biomass (LTTB) produces less amount of NOx (426 mg/m(3)), CO (0.002 mg/m(3)) and SO2 (2 mg/m(3)) as compared MTTB and raw beech wood. In the case of co-combustion, it was found that blending of coal with raw biomass does not show a stable behaviour. However, premixing of 50% of coal with 50% of torrefled biomasses (MTTB and LTTB) gives most stable behaviour and reduces NOx almost 30% and SOx up to almost 50% compared to coal. The fly ash contents analysis proved that K2O contents much decreased during co-firing of coal and torrefled fuels that could c
Název v anglickém jazyce
Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation
Popis výsledku anglicky
This study aims to assess the torrefaction of biomass as alternative renewable energy fuel to coal during co-firing. It was evaluated that torrefaction improves biomass grindability to such an extent that it can be used in coal mills with coal in co-firing without capital intensive modification. Torrefaction of beech wood was performed on a batch scale reactor at three different temperatures (200, 250 and 300 degrees C) with 30 min of residence time. The chemical structural changes in torrefled biomass were investigated with binding energies and FTIR (Fourier transform infrared) analysis. Monocombustion and co-combustion tests were performed to examine the combustion behaviour regarding flue gas emissions (CO, NOx and SO2) at 0.5, 1.5 and 2.5 m distance from the burner opening along with fly ash analysis. The FTIR and binding energies showed that lignin hardly affected during light torrefaction while hemicellulosic material was significantly depleted. The Hardgrove grindability index (HGI) was calculated with three methods (DIN51742, IFK and ISO). The medium temperature torrefled biomass (MTTB) yields HGI value in the range of 32-37 that was comparable with HGI of El Cerrejon coal (36-41). A slight change in temperature enabled the torrefled beech wood to be co-milled with coal without capital intensive modification and improved grindability. Comparing the combustion behaviour of single fuels, low temperature torrefled biomass (LTTB) produces less amount of NOx (426 mg/m(3)), CO (0.002 mg/m(3)) and SO2 (2 mg/m(3)) as compared MTTB and raw beech wood. In the case of co-combustion, it was found that blending of coal with raw biomass does not show a stable behaviour. However, premixing of 50% of coal with 50% of torrefled biomasses (MTTB and LTTB) gives most stable behaviour and reduces NOx almost 30% and SOx up to almost 50% compared to coal. The fly ash contents analysis proved that K2O contents much decreased during co-firing of coal and torrefled fuels that could c
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
neuveden
Číslo periodika v rámci svazku
209
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
118444-118444
Kód UT WoS článku
000571208100012
EID výsledku v databázi Scopus
2-s2.0-85089220866