Data-Driven Energy Efficiency Improvement in Industry 4.0
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU139272" target="_blank" >RIV/00216305:26210/20:PU139272 - isvavai.cz</a>
Výsledek na webu
<a href="http://escc.uth.gr/wp-content/uploads/2020/11/ESCC-2020_Book-of-Abstracts.pdf" target="_blank" >http://escc.uth.gr/wp-content/uploads/2020/11/ESCC-2020_Book-of-Abstracts.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-Driven Energy Efficiency Improvement in Industry 4.0
Popis výsledku v původním jazyce
Improving energy efficiency is one of the most important efforts towardssustainable development. Energy consumption is continuously increasing and renewable energy sources still have small contribution in energy production compared to primary sources. Energy saving measures are therefore required. These typically consist of decreasing energy consumption of buildings by insulation and replacing inefficient devices with efficient ones. The other opportunity how to improve energy efficiency is based on process data. Data-driven models for industrial energy efficiency improvement heavily rely on sensor data, experimentation data and knowledge-based data. This work reveals that too much research attention was invested into making data-driven models compared to ensuring the quality of industrial data. Furthermore, the real challenge within the industry is with data communication and infrastructure problems and not with a quality of modelling techniques. Costs r
Název v anglickém jazyce
Data-Driven Energy Efficiency Improvement in Industry 4.0
Popis výsledku anglicky
Improving energy efficiency is one of the most important efforts towardssustainable development. Energy consumption is continuously increasing and renewable energy sources still have small contribution in energy production compared to primary sources. Energy saving measures are therefore required. These typically consist of decreasing energy consumption of buildings by insulation and replacing inefficient devices with efficient ones. The other opportunity how to improve energy efficiency is based on process data. Data-driven models for industrial energy efficiency improvement heavily rely on sensor data, experimentation data and knowledge-based data. This work reveals that too much research attention was invested into making data-driven models compared to ensuring the quality of industrial data. Furthermore, the real challenge within the industry is with data communication and infrastructure problems and not with a quality of modelling techniques. Costs r
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategické partnerství pro environmentální technologie a produkci energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů