Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Design Optimization of a Solar Air Collector Integrating a Phase Change Material

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU139284" target="_blank" >RIV/00216305:26210/20:PU139284 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aidic.it/cet/20/81/036.pdf" target="_blank" >https://www.aidic.it/cet/20/81/036.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2081036" target="_blank" >10.3303/CET2081036</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Design Optimization of a Solar Air Collector Integrating a Phase Change Material

  • Popis výsledku v původním jazyce

    Solar radiation is a clean and renewable source of energy, which can be employed in various forms. In contrast to electricity, the use of solar energy in the form of heat is simple and straightforward. Solar air collectors (SAC), which convert solar radiation into heat and transfer it to the air, represent a way how to use solar energy for space heating in buildings. In the paper, the operation and optimal design of a solar air collector integrating a phase change material (PCM) for thermal energy storage is computationally investigated. A computer model of a front and back pass solar air collector with a PCM-based absorber was developed and validated against experimental data. The energy balance approach coupled with the control volume method was implemented for solving conduction heat transfer inside the PCM, and the effective heat capacity method was used for phase change modelling. The developed model was consequently coupled with the self-adaptive differential evolution optimization method. The cost function was defined as the root mean square error between the outlet SAC temperature and the set temperature. Using PCM parameters and its width as variables, the optimal set of parameters was determined. The optimal temperature of phase change was equal to 64.8 °C , PCM thickness 0.08 m and material parameter c_1 = 69,997 J/kg٠K.

  • Název v anglickém jazyce

    Design Optimization of a Solar Air Collector Integrating a Phase Change Material

  • Popis výsledku anglicky

    Solar radiation is a clean and renewable source of energy, which can be employed in various forms. In contrast to electricity, the use of solar energy in the form of heat is simple and straightforward. Solar air collectors (SAC), which convert solar radiation into heat and transfer it to the air, represent a way how to use solar energy for space heating in buildings. In the paper, the operation and optimal design of a solar air collector integrating a phase change material (PCM) for thermal energy storage is computationally investigated. A computer model of a front and back pass solar air collector with a PCM-based absorber was developed and validated against experimental data. The energy balance approach coupled with the control volume method was implemented for solving conduction heat transfer inside the PCM, and the effective heat capacity method was used for phase change modelling. The developed model was consequently coupled with the self-adaptive differential evolution optimization method. The cost function was defined as the root mean square error between the outlet SAC temperature and the set temperature. Using PCM parameters and its width as variables, the optimal set of parameters was determined. The optimal temperature of phase change was equal to 64.8 °C , PCM thickness 0.08 m and material parameter c_1 = 69,997 J/kg٠K.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Svazek periodika

    81

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    6

  • Strana od-do

    211-216

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85092100608