Uniqueness and stability of activated dislocation shapes in crystals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU139373" target="_blank" >RIV/00216305:26210/21:PU139373 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/21:00545719
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-651X/abd041" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-651X/abd041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-651X/abd041" target="_blank" >10.1088/1361-651X/abd041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Uniqueness and stability of activated dislocation shapes in crystals
Popis výsledku v původním jazyce
Simplified models of thermally activated dislocation glide constitute an important link between atomic-level studies of isolated dislocations and macroscopic thermodynamic properties of materials. These models rest upon the activation enthalpy, which is the energy to transform an initially straight dislocation into its activated state at finite applied stresses. Minimizing this activation enthalpy leads to a boundary value problem for the shape of the dislocation line. Besides two constant solutions corresponding to a straight dislocation in its stable and unstable states at the applied stress, there exist an infinite number of non-constant solutions. We investigate the characters of these solutions for dislocations anchored at their ends. Using the second variation of the activation enthalpy, we derive a set of conditions that define a unique activated state of the dislocation. The corresponding analysis demonstrates that the shape of the dislocation in this activated state must change with the applied stress to maintain the state of minimum activation enthalpy.
Název v anglickém jazyce
Uniqueness and stability of activated dislocation shapes in crystals
Popis výsledku anglicky
Simplified models of thermally activated dislocation glide constitute an important link between atomic-level studies of isolated dislocations and macroscopic thermodynamic properties of materials. These models rest upon the activation enthalpy, which is the energy to transform an initially straight dislocation into its activated state at finite applied stresses. Minimizing this activation enthalpy leads to a boundary value problem for the shape of the dislocation line. Besides two constant solutions corresponding to a straight dislocation in its stable and unstable states at the applied stress, there exist an infinite number of non-constant solutions. We investigate the characters of these solutions for dislocations anchored at their ends. Using the second variation of the activation enthalpy, we derive a set of conditions that define a unique activated state of the dislocation. The corresponding analysis demonstrates that the shape of the dislocation in this activated state must change with the applied stress to maintain the state of minimum activation enthalpy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
ISSN
0965-0393
e-ISSN
1361-651X
Svazek periodika
2021
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000615217900001
EID výsledku v databázi Scopus
2-s2.0-85101842742