Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cyanobacterial risk prevention under global warming using an extended Bayesian network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140987" target="_blank" >RIV/00216305:26210/21:PU140987 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0959652621019478?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0959652621019478?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2021.127729" target="_blank" >10.1016/j.jclepro.2021.127729</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cyanobacterial risk prevention under global warming using an extended Bayesian network

  • Popis výsledku v původním jazyce

    Cyanobacterial blooms under global warming are increasing worldwide, producing emerging contaminants, which threaten the health of human beings and aquatic ecosystems. The health burdens warrant the development of a useful risk-assessment tool and a holistic preventive-control scheme to prevent cyanobacterial blooms. This paper aims to integrate cyanobacterial risk assessment and risk preventive control by investigating the relationships amongst cyanobacterial blooms and multi-dimensional influencing variables. Two challenges hinder such a task. First, the time-series variations in cyanobacteria and influencing variables are uncertain and nonlinear. Second, there rarely exists an explicit modelling framework for integrating cyanobacterial risk assessment and risk preventive control. This study builds an extended Bayesian network model and proposes an integrated framework with functions of assessment, inference, preventive control, and visualisation of the risk of cyanobacterial blooms. Field data from a tropical lake are used to evaluate the model and framework. The proposed model achieves better performance than the seven models in comparison. The cyanobacterial risk is anticipated to increase by 38.5% under global warming. On the contrary, guided by the model and framework, the risk could be reduced by about 60% by taking the identified risk preventive control scheme. The cyanobacterial risk prevention would reduce aquatic emerging contaminants in drinking and recreational water sources. © 2021 Elsevier Ltd

  • Název v anglickém jazyce

    Cyanobacterial risk prevention under global warming using an extended Bayesian network

  • Popis výsledku anglicky

    Cyanobacterial blooms under global warming are increasing worldwide, producing emerging contaminants, which threaten the health of human beings and aquatic ecosystems. The health burdens warrant the development of a useful risk-assessment tool and a holistic preventive-control scheme to prevent cyanobacterial blooms. This paper aims to integrate cyanobacterial risk assessment and risk preventive control by investigating the relationships amongst cyanobacterial blooms and multi-dimensional influencing variables. Two challenges hinder such a task. First, the time-series variations in cyanobacteria and influencing variables are uncertain and nonlinear. Second, there rarely exists an explicit modelling framework for integrating cyanobacterial risk assessment and risk preventive control. This study builds an extended Bayesian network model and proposes an integrated framework with functions of assessment, inference, preventive control, and visualisation of the risk of cyanobacterial blooms. Field data from a tropical lake are used to evaluate the model and framework. The proposed model achieves better performance than the seven models in comparison. The cyanobacterial risk is anticipated to increase by 38.5% under global warming. On the contrary, guided by the model and framework, the risk could be reduced by about 60% by taking the identified risk preventive control scheme. The cyanobacterial risk prevention would reduce aquatic emerging contaminants in drinking and recreational water sources. © 2021 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    312

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    127729-127729

  • Kód UT WoS článku

    000693419300003

  • EID výsledku v databázi Scopus

    2-s2.0-85107282189