Plastic waste categorisation using machine learning methods-metals contaminations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU142154" target="_blank" >RIV/00216305:26210/21:PU142154 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.23919/SpliTech52315.2021.9566351" target="_blank" >http://dx.doi.org/10.23919/SpliTech52315.2021.9566351</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/SpliTech52315.2021.9566351" target="_blank" >10.23919/SpliTech52315.2021.9566351</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Plastic waste categorisation using machine learning methods-metals contaminations
Popis výsledku v původním jazyce
The global plastic consumption is consistently increasing, and plastic recycling is still a crucial issue to be solved due to the depletion of fossil resources. The polymers in the plastic can be chemically enhanced with materials such as colourants or metal fillers. This work aims to analyse the metal contamination data in the virgin plastic and plastic waste to derive a general categorisation rule for different plastic polymers (PET, PE, PP, PS). The metals contamination in plastics can be accumulated during use or waste management practices during recycling, which can be harmful for application. The metal concentrations for plastic streams are sampled from different origins: virgin plastic, household waste, and reprocessed household and industrial waste. Machine Learning methods, specifically the tree-based classification models, are used to derive a series of 'if-then' rules for classifying the plastic waste based on the sampled data. This helps the identification of the data patterns on the plastic streams and aids in deriving a categorisation rule for any plastic. The data-driven plastic categorisation could help in understanding the current waste practices and determining a proper recycling plan for local or even global plastic waste. © 2021 University of Split, FESB.
Název v anglickém jazyce
Plastic waste categorisation using machine learning methods-metals contaminations
Popis výsledku anglicky
The global plastic consumption is consistently increasing, and plastic recycling is still a crucial issue to be solved due to the depletion of fossil resources. The polymers in the plastic can be chemically enhanced with materials such as colourants or metal fillers. This work aims to analyse the metal contamination data in the virgin plastic and plastic waste to derive a general categorisation rule for different plastic polymers (PET, PE, PP, PS). The metals contamination in plastics can be accumulated during use or waste management practices during recycling, which can be harmful for application. The metal concentrations for plastic streams are sampled from different origins: virgin plastic, household waste, and reprocessed household and industrial waste. Machine Learning methods, specifically the tree-based classification models, are used to derive a series of 'if-then' rules for classifying the plastic waste based on the sampled data. This helps the identification of the data patterns on the plastic streams and aids in deriving a categorisation rule for any plastic. The data-driven plastic categorisation could help in understanding the current waste practices and determining a proper recycling plan for local or even global plastic waste. © 2021 University of Split, FESB.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 6th International Conference on Smart and Sustainable Technologies (SpliTech)
ISBN
9789532901122
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
173101-173101
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
neuveden
Místo konání akce
Bol and Split
Datum konání akce
8. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—