Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU142576" target="_blank" >RIV/00216305:26210/21:PU142576 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cetjournal.it/cet/21/88/100.pdf" target="_blank" >https://www.cetjournal.it/cet/21/88/100.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2188100" target="_blank" >10.3303/CET2188100</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes
Popis výsledku v původním jazyce
The overall condensing power at condensers is affected by many factors. A condensate film on the pipe wall plays a crucial role in heat transfer. The velocity of the gas phase inside the tubes has a fundamental influence on the movement of the liquid film and the specific course of the velocity profile in the condensate film. The magnitude of the shear stress at the steam-condensate interface affects the film thickness and its integrity. This paper presents a study to evaluate the effect of the flow velocity inside a vertical pipe on the heat transfer coefficient during water vapour condensation. Specifically, steam flow on heat transfer for two different pipes is evaluated, namely with inner diameters 16 and 26 mm. A common feature is a detailed investigation of the steam condensation process for a parallel flow and counterflow of steam and liquid film. Furthermore, the influence of the temperature and flow direction of the water cooling the outer side of the condenser tube on the transmitted power is evaluated. The condensation process is experimentally investigated on a copper pipe-in-pipe heat exchanger with a possible change of the direction of the cooling water flow. Determination of the condensation heat transfer coefficient is based on experimental identification of the overall heat transfer coefficient and subsequent inverse calculation of the condensation heat transfer coefficient. The condensation heat transfer coefficient ranges from 3,000 to 6,500 W/(m2∙K) for all configurations measured. The results generally show that as the Reynolds number of steam flow increases, the condensation heat transfer coefficient increases too. At Reynolds number of 35,000 the same heat transfer coefficient value is identified either for parallel flow or counterflow of cooling water. For higher Reynolds numbers, the parallel flow of cooling water enables to reach the higher heat transfer coefficient compared to counterflow configuration. At lower Reynolds numbers, the depen
Název v anglickém jazyce
Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes
Popis výsledku anglicky
The overall condensing power at condensers is affected by many factors. A condensate film on the pipe wall plays a crucial role in heat transfer. The velocity of the gas phase inside the tubes has a fundamental influence on the movement of the liquid film and the specific course of the velocity profile in the condensate film. The magnitude of the shear stress at the steam-condensate interface affects the film thickness and its integrity. This paper presents a study to evaluate the effect of the flow velocity inside a vertical pipe on the heat transfer coefficient during water vapour condensation. Specifically, steam flow on heat transfer for two different pipes is evaluated, namely with inner diameters 16 and 26 mm. A common feature is a detailed investigation of the steam condensation process for a parallel flow and counterflow of steam and liquid film. Furthermore, the influence of the temperature and flow direction of the water cooling the outer side of the condenser tube on the transmitted power is evaluated. The condensation process is experimentally investigated on a copper pipe-in-pipe heat exchanger with a possible change of the direction of the cooling water flow. Determination of the condensation heat transfer coefficient is based on experimental identification of the overall heat transfer coefficient and subsequent inverse calculation of the condensation heat transfer coefficient. The condensation heat transfer coefficient ranges from 3,000 to 6,500 W/(m2∙K) for all configurations measured. The results generally show that as the Reynolds number of steam flow increases, the condensation heat transfer coefficient increases too. At Reynolds number of 35,000 the same heat transfer coefficient value is identified either for parallel flow or counterflow of cooling water. For higher Reynolds numbers, the parallel flow of cooling water enables to reach the higher heat transfer coefficient compared to counterflow configuration. At lower Reynolds numbers, the depen
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Výpočtové simulace pro efektivní nízkoemisní energetiku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
2021
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
6
Strana od-do
601-606
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122578451