Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU142576" target="_blank" >RIV/00216305:26210/21:PU142576 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cetjournal.it/cet/21/88/100.pdf" target="_blank" >https://www.cetjournal.it/cet/21/88/100.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2188100" target="_blank" >10.3303/CET2188100</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes

  • Popis výsledku v původním jazyce

    The overall condensing power at condensers is affected by many factors. A condensate film on the pipe wall plays a crucial role in heat transfer. The velocity of the gas phase inside the tubes has a fundamental influence on the movement of the liquid film and the specific course of the velocity profile in the condensate film. The magnitude of the shear stress at the steam-condensate interface affects the film thickness and its integrity. This paper presents a study to evaluate the effect of the flow velocity inside a vertical pipe on the heat transfer coefficient during water vapour condensation. Specifically, steam flow on heat transfer for two different pipes is evaluated, namely with inner diameters 16 and 26 mm. A common feature is a detailed investigation of the steam condensation process for a parallel flow and counterflow of steam and liquid film. Furthermore, the influence of the temperature and flow direction of the water cooling the outer side of the condenser tube on the transmitted power is evaluated. The condensation process is experimentally investigated on a copper pipe-in-pipe heat exchanger with a possible change of the direction of the cooling water flow. Determination of the condensation heat transfer coefficient is based on experimental identification of the overall heat transfer coefficient and subsequent inverse calculation of the condensation heat transfer coefficient. The condensation heat transfer coefficient ranges from 3,000 to 6,500 W/(m2∙K) for all configurations measured. The results generally show that as the Reynolds number of steam flow increases, the condensation heat transfer coefficient increases too. At Reynolds number of 35,000 the same heat transfer coefficient value is identified either for parallel flow or counterflow of cooling water. For higher Reynolds numbers, the parallel flow of cooling water enables to reach the higher heat transfer coefficient compared to counterflow configuration. At lower Reynolds numbers, the depen

  • Název v anglickém jazyce

    Influence of tube diameter and steam flow rate on heat transfer in a vertical pipe of condenser: experimental investigation of copper pipes

  • Popis výsledku anglicky

    The overall condensing power at condensers is affected by many factors. A condensate film on the pipe wall plays a crucial role in heat transfer. The velocity of the gas phase inside the tubes has a fundamental influence on the movement of the liquid film and the specific course of the velocity profile in the condensate film. The magnitude of the shear stress at the steam-condensate interface affects the film thickness and its integrity. This paper presents a study to evaluate the effect of the flow velocity inside a vertical pipe on the heat transfer coefficient during water vapour condensation. Specifically, steam flow on heat transfer for two different pipes is evaluated, namely with inner diameters 16 and 26 mm. A common feature is a detailed investigation of the steam condensation process for a parallel flow and counterflow of steam and liquid film. Furthermore, the influence of the temperature and flow direction of the water cooling the outer side of the condenser tube on the transmitted power is evaluated. The condensation process is experimentally investigated on a copper pipe-in-pipe heat exchanger with a possible change of the direction of the cooling water flow. Determination of the condensation heat transfer coefficient is based on experimental identification of the overall heat transfer coefficient and subsequent inverse calculation of the condensation heat transfer coefficient. The condensation heat transfer coefficient ranges from 3,000 to 6,500 W/(m2∙K) for all configurations measured. The results generally show that as the Reynolds number of steam flow increases, the condensation heat transfer coefficient increases too. At Reynolds number of 35,000 the same heat transfer coefficient value is identified either for parallel flow or counterflow of cooling water. For higher Reynolds numbers, the parallel flow of cooling water enables to reach the higher heat transfer coefficient compared to counterflow configuration. At lower Reynolds numbers, the depen

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Výpočtové simulace pro efektivní nízkoemisní energetiku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    2021

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    6

  • Strana od-do

    601-606

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85122578451