Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143851" target="_blank" >RIV/00216305:26210/21:PU143851 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360544220322751" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544220322751</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2020.119168" target="_blank" >10.1016/j.energy.2020.119168</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble
Popis výsledku v původním jazyce
Due to lucrative economics and energy policies, cogeneration systems have blossomed in many existing industries and became their backbone technology for energy generation. With ever-increasing energy demands, the required capacity of cogeneration gradually grows yearly. This situation unveils a crawling problem in the background where many existing cogeneration systems require more energy output than their allocated design capacity. To debottleneck cogeneration systems, this work extends the bottleneck tree analysis (BOTA) towards multi-dimensional problems with novel consideration of data-driven uncertainty modelling and multi-criteria planning approaches. First, cogeneration systems were modelled using an ensemble neural network with mass and energy balance to quantify the system uncertainty while assessing energy, environment, and economic indicators in the system. These indicators are then evaluated using a multi-criteria decision making (MCDM) method to perform bottleneck tree analysis (BOTA), which identifies optimal pathways to plan for debottlenecking projects in a multi-train cogeneration plant case study. With zero initial investment and only reinvestments with profits, the method achieved 54.2 % improvement in carbon emission per unit power production, 46.3 % improvement in operating expenditure, 59.0 % improvement in heat energy production, and 58.9 % improvement in power production with a shortest average payback period of 93.9 weeks.
Název v anglickém jazyce
Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble
Popis výsledku anglicky
Due to lucrative economics and energy policies, cogeneration systems have blossomed in many existing industries and became their backbone technology for energy generation. With ever-increasing energy demands, the required capacity of cogeneration gradually grows yearly. This situation unveils a crawling problem in the background where many existing cogeneration systems require more energy output than their allocated design capacity. To debottleneck cogeneration systems, this work extends the bottleneck tree analysis (BOTA) towards multi-dimensional problems with novel consideration of data-driven uncertainty modelling and multi-criteria planning approaches. First, cogeneration systems were modelled using an ensemble neural network with mass and energy balance to quantify the system uncertainty while assessing energy, environment, and economic indicators in the system. These indicators are then evaluated using a multi-criteria decision making (MCDM) method to perform bottleneck tree analysis (BOTA), which identifies optimal pathways to plan for debottlenecking projects in a multi-train cogeneration plant case study. With zero initial investment and only reinvestments with profits, the method achieved 54.2 % improvement in carbon emission per unit power production, 46.3 % improvement in operating expenditure, 59.0 % improvement in heat energy production, and 58.9 % improvement in power production with a shortest average payback period of 93.9 weeks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategické partnerství pro environmentální technologie a produkci energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
215
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
„119168-1“-„119168-19“
Kód UT WoS článku
000596834000016
EID výsledku v databázi Scopus
2-s2.0-85095748401