Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143851" target="_blank" >RIV/00216305:26210/21:PU143851 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544220322751" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544220322751</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2020.119168" target="_blank" >10.1016/j.energy.2020.119168</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble

  • Popis výsledku v původním jazyce

    Due to lucrative economics and energy policies, cogeneration systems have blossomed in many existing industries and became their backbone technology for energy generation. With ever-increasing energy demands, the required capacity of cogeneration gradually grows yearly. This situation unveils a crawling problem in the background where many existing cogeneration systems require more energy output than their allocated design capacity. To debottleneck cogeneration systems, this work extends the bottleneck tree analysis (BOTA) towards multi-dimensional problems with novel consideration of data-driven uncertainty modelling and multi-criteria planning approaches. First, cogeneration systems were modelled using an ensemble neural network with mass and energy balance to quantify the system uncertainty while assessing energy, environment, and economic indicators in the system. These indicators are then evaluated using a multi-criteria decision making (MCDM) method to perform bottleneck tree analysis (BOTA), which identifies optimal pathways to plan for debottlenecking projects in a multi-train cogeneration plant case study. With zero initial investment and only reinvestments with profits, the method achieved 54.2 % improvement in carbon emission per unit power production, 46.3 % improvement in operating expenditure, 59.0 % improvement in heat energy production, and 58.9 % improvement in power production with a shortest average payback period of 93.9 weeks.

  • Název v anglickém jazyce

    Debottlenecking cogeneration systems under process variations: Multi-dimensional bottleneck tree analysis with neural network ensemble

  • Popis výsledku anglicky

    Due to lucrative economics and energy policies, cogeneration systems have blossomed in many existing industries and became their backbone technology for energy generation. With ever-increasing energy demands, the required capacity of cogeneration gradually grows yearly. This situation unveils a crawling problem in the background where many existing cogeneration systems require more energy output than their allocated design capacity. To debottleneck cogeneration systems, this work extends the bottleneck tree analysis (BOTA) towards multi-dimensional problems with novel consideration of data-driven uncertainty modelling and multi-criteria planning approaches. First, cogeneration systems were modelled using an ensemble neural network with mass and energy balance to quantify the system uncertainty while assessing energy, environment, and economic indicators in the system. These indicators are then evaluated using a multi-criteria decision making (MCDM) method to perform bottleneck tree analysis (BOTA), which identifies optimal pathways to plan for debottlenecking projects in a multi-train cogeneration plant case study. With zero initial investment and only reinvestments with profits, the method achieved 54.2 % improvement in carbon emission per unit power production, 46.3 % improvement in operating expenditure, 59.0 % improvement in heat energy production, and 58.9 % improvement in power production with a shortest average payback period of 93.9 weeks.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategické partnerství pro environmentální technologie a produkci energie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    215

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    „119168-1“-„119168-19“

  • Kód UT WoS článku

    000596834000016

  • EID výsledku v databázi Scopus

    2-s2.0-85095748401