Operational optimization of a cyclic gas pipeline network with consideration of thermal hydraulics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143865" target="_blank" >RIV/00216305:26210/21:PU143865 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs-acs-org.ezproxy.lib.vutbr.cz/doi/abs/10.1021/acs.iecr.0c04007" target="_blank" >https://pubs-acs-org.ezproxy.lib.vutbr.cz/doi/abs/10.1021/acs.iecr.0c04007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.iecr.0c04007" target="_blank" >10.1021/acs.iecr.0c04007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Operational optimization of a cyclic gas pipeline network with consideration of thermal hydraulics
Popis výsledku v původním jazyce
Following the rapidly increasing global demand for natural gas, many countries are launching projects to expand gas pipeline networks (GPNs). As a result, more cyclic GPNs are under construction with more rigorous physical constraints required, bringing new challenges to GPN optimization. This paper proposes a novel nonconvex mixed-integer nonlinear programming (MINLP) formulation for operational optimization of the cyclic GPN with simultaneous consideration of thermal hydraulics and flow direction reversibility, which has not been explored in the literature. To solve the proposed MINLP model, a three-level decomposition algorithm is proposed to generate an approximate solution, from which the flow direction is extracted and used to fix all discrete variables in the original MINLP model to construct two-stage NLP models. The NLP models are then solved to improve solution feasibility and quality. The computational results show that the proposed approach outweighs several state-of-the-art commercial MINLP solvers with better solutions and shorter computational time.
Název v anglickém jazyce
Operational optimization of a cyclic gas pipeline network with consideration of thermal hydraulics
Popis výsledku anglicky
Following the rapidly increasing global demand for natural gas, many countries are launching projects to expand gas pipeline networks (GPNs). As a result, more cyclic GPNs are under construction with more rigorous physical constraints required, bringing new challenges to GPN optimization. This paper proposes a novel nonconvex mixed-integer nonlinear programming (MINLP) formulation for operational optimization of the cyclic GPN with simultaneous consideration of thermal hydraulics and flow direction reversibility, which has not been explored in the literature. To solve the proposed MINLP model, a three-level decomposition algorithm is proposed to generate an approximate solution, from which the flow direction is extracted and used to fix all discrete variables in the original MINLP model to construct two-stage NLP models. The NLP models are then solved to improve solution feasibility and quality. The computational results show that the proposed approach outweighs several state-of-the-art commercial MINLP solvers with better solutions and shorter computational time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
ISSN
0888-5885
e-ISSN
1520-5045
Svazek periodika
6
Číslo periodika v rámci svazku
60
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
2501-2522
Kód UT WoS článku
000621056900016
EID výsledku v databázi Scopus
2-s2.0-85101011602