Determination of Residual Stresses in Cylindrical Components by the Hole-drilling Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU141565" target="_blank" >RIV/00216305:26210/22:PU141565 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11340-021-00765-y" target="_blank" >https://link.springer.com/article/10.1007/s11340-021-00765-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11340-021-00765-y" target="_blank" >10.1007/s11340-021-00765-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of Residual Stresses in Cylindrical Components by the Hole-drilling Method
Popis výsledku v původním jazyce
Background The hole-drilling method is a widely used technique for the determination of residual stresses, but the application of the method requires a planar surface of the measured component. Objective Since many components have a cylindrical surface in industrial practice, this study focuses on the determination of residual stresses in cylindrical components. Methods Several cylindrical bodies with various residual stress states were simulated and the method described in ASTM E837 standard was used for the evaluation process. In order to properly simulate the required residual stress states in cylindrical bodies, a new approach for the application of load into the finite element models of hole-drilling experiment is presented. Furthermore, a new procedure with four sets of calibration coefficients is proposed to determine the uniform residual stresses in cylindrical bodies. Results Based on the obtained results, the factors affecting the evaluation are identified and the errors of residual stresses evaluated by ASTM E837 standard are quantified for several cylindrical bodies. Moreover, the testing of the procedure with four sets of calibration coefficients shows a negligible relative error of the evaluated residual stresses even for cylindrical bodies with a small radius. Conclusions It can be stated that the proposed procedure significantly improves the evaluation of the uniform residual stresses in cylindrical bodies. The results of this study can also be used to estimate an error in practical measurements or to determine the radius of a cylindrical body, which is still acceptable when the residual stresses are evaluated by ASTM E837 standard.
Název v anglickém jazyce
Determination of Residual Stresses in Cylindrical Components by the Hole-drilling Method
Popis výsledku anglicky
Background The hole-drilling method is a widely used technique for the determination of residual stresses, but the application of the method requires a planar surface of the measured component. Objective Since many components have a cylindrical surface in industrial practice, this study focuses on the determination of residual stresses in cylindrical components. Methods Several cylindrical bodies with various residual stress states were simulated and the method described in ASTM E837 standard was used for the evaluation process. In order to properly simulate the required residual stress states in cylindrical bodies, a new approach for the application of load into the finite element models of hole-drilling experiment is presented. Furthermore, a new procedure with four sets of calibration coefficients is proposed to determine the uniform residual stresses in cylindrical bodies. Results Based on the obtained results, the factors affecting the evaluation are identified and the errors of residual stresses evaluated by ASTM E837 standard are quantified for several cylindrical bodies. Moreover, the testing of the procedure with four sets of calibration coefficients shows a negligible relative error of the evaluated residual stresses even for cylindrical bodies with a small radius. Conclusions It can be stated that the proposed procedure significantly improves the evaluation of the uniform residual stresses in cylindrical bodies. The results of this study can also be used to estimate an error in practical measurements or to determine the radius of a cylindrical body, which is still acceptable when the residual stresses are evaluated by ASTM E837 standard.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERIMENTAL MECHANICS
ISSN
0014-4851
e-ISSN
1741-2765
Svazek periodika
62
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
87-99
Kód UT WoS článku
000687518500001
EID výsledku v databázi Scopus
2-s2.0-85113734979