Critical pressure in liquids due to dynamic choking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144775" target="_blank" >RIV/00216305:26210/22:PU144775 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.045107" target="_blank" >https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.045107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.105.045107" target="_blank" >10.1103/PhysRevE.105.045107</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Critical pressure in liquids due to dynamic choking
Popis výsledku v původním jazyce
The existence of a critical pressure ratio due to gas-dynamic choking is well known for an ideal gas. It is reasonable to assume that liquids whose compressibility is defined by the bulk modulus also have a critical pressure ratio. The problem discussed here is a fundamental one because it deals with the basic principles of the compressible flow of liquids. It has been shown that even though an ideal gas with a constant heat capacity ratio value has a critical pressure ratio, liquid with a constant bulk modulus value experiences a critical pressure difference. As the outlet pressure gradually decreases, the liquid reaches the local speed of sound, and further reduction of this pressure does not lead to an increase in mass flow. This phenomenon occurs in liquids without considering the change from a liquid to a gaseous phase. Behavior is confirmed analytically for different bulk modulus models, and for a constant bulk modulus value, the phenomenon is verified by numerical simulation using computational fluid dynamics. The conclusions published in this work point to striking analogies between the behavior of liquids and ideal gas. The equations governing the motion of liquids derived in this work, thus complete the fundamental description of the critical flow of fluids.
Název v anglickém jazyce
Critical pressure in liquids due to dynamic choking
Popis výsledku anglicky
The existence of a critical pressure ratio due to gas-dynamic choking is well known for an ideal gas. It is reasonable to assume that liquids whose compressibility is defined by the bulk modulus also have a critical pressure ratio. The problem discussed here is a fundamental one because it deals with the basic principles of the compressible flow of liquids. It has been shown that even though an ideal gas with a constant heat capacity ratio value has a critical pressure ratio, liquid with a constant bulk modulus value experiences a critical pressure difference. As the outlet pressure gradually decreases, the liquid reaches the local speed of sound, and further reduction of this pressure does not lead to an increase in mass flow. This phenomenon occurs in liquids without considering the change from a liquid to a gaseous phase. Behavior is confirmed analytically for different bulk modulus models, and for a constant bulk modulus value, the phenomenon is verified by numerical simulation using computational fluid dynamics. The conclusions published in this work point to striking analogies between the behavior of liquids and ideal gas. The equations governing the motion of liquids derived in this work, thus complete the fundamental description of the critical flow of fluids.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
105
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000798342700010
EID výsledku v databázi Scopus
2-s2.0-85129746515