Requirements for Hybrid Technology Enabling the Production of High-Precision Thin-Wall Castings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145258" target="_blank" >RIV/00216305:26210/22:PU145258 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/15/11/3805" target="_blank" >https://www.mdpi.com/1996-1944/15/11/3805</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma15113805" target="_blank" >10.3390/ma15113805</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Requirements for Hybrid Technology Enabling the Production of High-Precision Thin-Wall Castings
Popis výsledku v původním jazyce
Prototypes and small series production of metal thin-walled components is a field for the use of a number of additive technologies. This method has certain limits related to the size and price of the parts, productivity, or the type of requested material. On the other hand, conventional production methods encounter the limits of shape, which are currently associated with the implementation of optimization methods such as topological optimization or generative design. An effective solution is employing hybrid technology, which combines the advantages of 3D model printing and conventional casting production methods. This paper describes the design of aluminum casting using topological optimization and technological co-design for the purpose of switching to new manufacturing technology. It characterizes the requirements of hybrid technology for the material and properties of the model in relation to the production operations of the investment casting technology. Optical roughness measurement compares the surface quality in a standard wax model and a model obtained by additive manufacturing (AM) of polymethyl methacrylate (PMMA) using the binder jetting method. The surface quality results of the 3D printed model evaluated by measuring the surface roughness are lower than for the standard wax model; however, they still meet the requirements of prototype production technology. The measurements proved that the PMMA model has half the thermal expansion in the measured interval compared to the wax model, which was confirmed by minimal shape deviations in the dimensional analysis.
Název v anglickém jazyce
Requirements for Hybrid Technology Enabling the Production of High-Precision Thin-Wall Castings
Popis výsledku anglicky
Prototypes and small series production of metal thin-walled components is a field for the use of a number of additive technologies. This method has certain limits related to the size and price of the parts, productivity, or the type of requested material. On the other hand, conventional production methods encounter the limits of shape, which are currently associated with the implementation of optimization methods such as topological optimization or generative design. An effective solution is employing hybrid technology, which combines the advantages of 3D model printing and conventional casting production methods. This paper describes the design of aluminum casting using topological optimization and technological co-design for the purpose of switching to new manufacturing technology. It characterizes the requirements of hybrid technology for the material and properties of the model in relation to the production operations of the investment casting technology. Optical roughness measurement compares the surface quality in a standard wax model and a model obtained by additive manufacturing (AM) of polymethyl methacrylate (PMMA) using the binder jetting method. The surface quality results of the 3D printed model evaluated by measuring the surface roughness are lower than for the standard wax model; however, they still meet the requirements of prototype production technology. The measurements proved that the PMMA model has half the thermal expansion in the measured interval compared to the wax model, which was confirmed by minimal shape deviations in the dimensional analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
3805-3805
Kód UT WoS článku
000809462500001
EID výsledku v databázi Scopus
2-s2.0-85131526155