Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145544" target="_blank" >RIV/00216305:26210/22:PU145544 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0098135422002812" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0098135422002812</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compchemeng.2022.107946" target="_blank" >10.1016/j.compchemeng.2022.107946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation
Popis výsledku v původním jazyce
Future projections of municipal solid waste (MSW) generation trends can resolve data inadequacy in formulating a sustainable MSW management framework. Artificial neural network (ANN) has been recently adopted to forecast MSW generation, but the reliability and validity of the stochastic forecast are not thoroughly studied. This research develops Bayesian-optimised ANN models coupling ensemble uncertainty analysis to forecast country-scale MSW physical composition trends. Pearson correlation analysis shows that each MSW physical composition exhibits collinearity with different indicators; therefore, the MSW should be forecasted based on its heterogeneity. The Bayesian-optimised ANN models forecast with smaller relative standard deviations (3.64–27.7%) than the default ANN models (11.1–44,400%). Malaysia is expected to generate 42,873 t/d of MSW in 2030, comprising 44% of food waste. This study provides a well-generalised ANN framework and valuable insights for the waste authorities in developing a circular economy via proper waste management.
Název v anglickém jazyce
Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation
Popis výsledku anglicky
Future projections of municipal solid waste (MSW) generation trends can resolve data inadequacy in formulating a sustainable MSW management framework. Artificial neural network (ANN) has been recently adopted to forecast MSW generation, but the reliability and validity of the stochastic forecast are not thoroughly studied. This research develops Bayesian-optimised ANN models coupling ensemble uncertainty analysis to forecast country-scale MSW physical composition trends. Pearson correlation analysis shows that each MSW physical composition exhibits collinearity with different indicators; therefore, the MSW should be forecasted based on its heterogeneity. The Bayesian-optimised ANN models forecast with smaller relative standard deviations (3.64–27.7%) than the default ANN models (11.1–44,400%). Malaysia is expected to generate 42,873 t/d of MSW in 2030, comprising 44% of food waste. This study provides a well-generalised ANN framework and valuable insights for the waste authorities in developing a circular economy via proper waste management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Chemical Engineering
ISSN
0098-1354
e-ISSN
1873-4375
Svazek periodika
neuveden
Číslo periodika v rámci svazku
166
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
107946-107946
Kód UT WoS článku
000860379200005
EID výsledku v databázi Scopus
2-s2.0-85136456940