Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145551" target="_blank" >RIV/00216305:26210/22:PU145551 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222018655" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222018655</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.124966" target="_blank" >10.1016/j.energy.2022.124966</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support

  • Popis výsledku v původním jazyce

    Because of the low charging temperature, salt hydrate-based adsorption thermochemical energy storage (TCES) is currently a significant technology that promises long-term energy storage. A corrugated-shaped heat storage unit (HSU) in which embedding porous metal bracket is proposed in this work to enhance heat transfer between the thermochemical material (TCM) wrapped inside and the heat fluid transfer (HTF) in the external corrugated channel. The thermo-chemical conversion behaviours, including reactive transport processes during dehydration (charging) and hydration (discharging), as well as the influence of parameters, are comprehensively investigated. The numerical results indicate that increasing the HTF temperature facilitates the charging process while the discharging can be promoted by decreasing reaction bed temperature. The time required to complete charging and discharging for the reference cases is 2990 s and 5700 s. For both charging and discharging powers of reactive bed, the values dramatically surge in a short time and then gradually decrease, with the maximum powers of 2638 W and 1866 W, respectively. Boosting evaporation temperature (water vapour pressure) accelerates hydration while the effect of condensation temperature on dehydration is insignificant. The reaction period can be further shortened by heightening the thermal conductivity of TCM, and the porosity also has a distinct influence on the reaction. Compared to the storage unit of a straight external channel without a metal bracket inside, this heat storage module saves 34% and 23% in charging and discharging times. The results of this work provide insights into the prediction and improvement of thermochemical conversion behaviours.

  • Název v anglickém jazyce

    Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support

  • Popis výsledku anglicky

    Because of the low charging temperature, salt hydrate-based adsorption thermochemical energy storage (TCES) is currently a significant technology that promises long-term energy storage. A corrugated-shaped heat storage unit (HSU) in which embedding porous metal bracket is proposed in this work to enhance heat transfer between the thermochemical material (TCM) wrapped inside and the heat fluid transfer (HTF) in the external corrugated channel. The thermo-chemical conversion behaviours, including reactive transport processes during dehydration (charging) and hydration (discharging), as well as the influence of parameters, are comprehensively investigated. The numerical results indicate that increasing the HTF temperature facilitates the charging process while the discharging can be promoted by decreasing reaction bed temperature. The time required to complete charging and discharging for the reference cases is 2990 s and 5700 s. For both charging and discharging powers of reactive bed, the values dramatically surge in a short time and then gradually decrease, with the maximum powers of 2638 W and 1866 W, respectively. Boosting evaporation temperature (water vapour pressure) accelerates hydration while the effect of condensation temperature on dehydration is insignificant. The reaction period can be further shortened by heightening the thermal conductivity of TCM, and the porosity also has a distinct influence on the reaction. Compared to the storage unit of a straight external channel without a metal bracket inside, this heat storage module saves 34% and 23% in charging and discharging times. The results of this work provide insights into the prediction and improvement of thermochemical conversion behaviours.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTACH19033" target="_blank" >LTACH19033: Intenzifikace přenosu tepla a optimalizace integrace energie v teplosměnných zařízeních pro tepelné využití odpadního tepla v chemickém průmyslu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    259

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    124966-124966

  • Kód UT WoS článku

    000848593100002

  • EID výsledku v databázi Scopus

    2-s2.0-85135881853